
FTL: Synthesizing a Parallel Layout Engine

Abstract
Visual layout languages are important for running web browsers
on mobile devices, but they are difficult to design, implement, and
optimize. Our solution is the Fast Tree Language (FTL) layout en-
gine generator. Given an attribute grammar defining the language’s
semantics and layout instances to profile, FTL outputs the first
strongly scaling parallel layout engine.

Parallelizing the small tree traversals that characterize layout
solving is challenging. We show how to combine existing tech-
niques, and where needed, present new ones. First, to assist de-
signing parallelizable specifications, we introduce a declarative
query and constraint language over grammar evaluator schedules.
Next, to help find the fastest evaluator schedule, we present how
to synthesize a variety of attribute grammar evaluation orders.
Third, as memory bottlenecks prevent scaling, FTL autotunes over
data layout optimizations. Finally, for balanced, locality-aware, and
low-overhead scheduling, FTL partitions the document tree among
cores using a novel semi-static approximation of work stealing.

We measure strong scaling within 4% of ideal on a single-socket
quad-core device, and, including data layout optimization, total
speedup of 5.2x. On 2 sockets, total speedup is 9.3x and within
14% of the ideal.

1. Introduction
Document layout implementation is a long-studied [7, 11, 31] prob-
lem that is important for consumer products. For example, studies
at Facebook, Google, Microsoft, and Amazon [44] measure that
decreasing web page load time by 2s improves user engagement
enough to increase annual revenue by 1-2%. Professional designers
must therefore balance performance with rich features and produc-
tivity. To ease this burden, we present techniques for designing and
implementing parallel layout languages.

Characterizing the performance bottleneck, Anonymous [4] and
Meyerovich et al. [27, 39] find that loading webpages is CPU-
bound and layout logic accounts for 15-22% of the CPU time. The
trade-off between performance, productivity, and feature set is pro-
nounced for mobile devices. Loading the same popular webpages
on a 1st generation iPhone as on a MacBook Pro laptop [27, 39]
suffers from a magnitude drop in performance. A developer port-
ing a laptop application to a mobile device will manually optimize
inefficient features or even switch to more imperative and low-level
languages.

[Copyright notice will appear here once ’preprint’ option is removed.]

Correctly predicting that commodity mobile architectures would
be parallel, Jones et al. [27] propose architecting a browser as con-
current components and exploiting fine-grained parallelism within
each component. Parallel browser components have since been
studied [4, 20, 39] and deployed [6].

Layout engines, however, are still not parallel. Brown [11] pro-
poses a task parallel decomposition; implementing it, Meyerovich
and Bodı́k [39] and Burckhardt et al. [12] only report weak scal-
ing. Parallel layout of modern documents remains an open problem
because small pointer-chasing tree traversals are challenging.

We address the layout language implementation problem by
introducing a level of abstraction: the Fast Tree Language (FTL)
layout engine generator. Given a layout language declaratively
specified as an attribute grammar [5, 30, 39, 43], FTL generates
a parallel implementation with a tuned data layout and scheduler.

FTL extends existing static [29] and parallel [28] attribute gram-
mar evaluation techniques. We briefly introduce FTL’s design and
the technical contributions in each component:

Grammar specification and debugging language (Section 3):
Designers either specify a layout language as an attribute grammar
or use one of our higher-level languages [2, 5] that compile into
one. FTL then statically finds an implementing sequence of tree
traversals called a visit order [28, 29]. Each traversal follows an
optimizable control pattern, such as parallel top down.

As traditional in attribute grammar compilation [29], FTL as-
sists grammar designers by statically checking that every well-
formed input tree has a well-defined layout and that the asymptotic
complexity of evaluation is bounded. At this point, FTL can also
generate an inefficient layout engine that a designer can then test
against input documents.

Designing grammars for parallelization is still difficult so FTL
provides further support. First, FTL supports constraints on visit or-
der, such as to disallow non-reentrant foreign function calls within
a parallel traversal. Debugging support is also important: FTL sup-
ports queries over visit orders. For example, a designer can re-
quest the set of parallel visit orders, or query for the dependency
that breaks a parallel order she expected to work. Constraints and
queries are phrased as standard Prolog [14] predicates.

Querying and constraining visit orders is a new approach to
designing grammars, as is matching them to optimizable patterns.

Evaluator synthesizer and tuner (Section 4): FTL’s synthesizer
generates a variety of visit orders for an input grammar. We use
the synthesizer for our first autotuning optimization: FTL profiles
different visit orders and picks the fastest.

The space of visit orders is large, so we present an optimized
search for them. First, as many visit orders are similar, it skips
redundant pattern matching calls by memoizing them and incre-
mentally approximating their weakest precondition [17]. Second,
it quickly finds a valid visit order matching a concrete sequence
of patterns (e.g., a top-down traversal followed by bottom-up) by
monotonically weakening an assume/guarantee proof [40]. Finally,
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Figure 1: Tree input, data dependencies, and visualized output.

it prunes the search using a greedy heuristic [29] that evaluates at-
tributes in the first traversal possible.

We found synthesizing and autotuning visit orders to be effec-
tive new approaches. For a CSS subset run on sequential hardware,
performance between the fastest and slowest differs by 32%.

Code generator with data layout tuning (Section 5): Given a
synthesized sequence of tree traversals, a code generator outputs an
executable implementation integrated with a parser and a renderer.

Code generation also emits data layout optimizations because
traversing small trees makes memory access costly. E.g., pointer
compression replaces 64bit pointers with 8bit relative offsets and
subtrees are allocated in blocks for spatial locality. Our second
autotuning optimization is over the set of these code generated
optimizations, including their parameters. For example, block size
depends on the cache size.

We show our data layout optimizations, such as compression,
are important for computations on small trees. Without them,
speedup on 4 cores is 30% from perfect scaling. With them, it
reaches 4% of ideal. We also observe a 26% sequential speedup.

Semi-static task scheduling with a work stealing approxima-
tion (Section 6): At runtime, FTL’s semi-static task scheduler ex-
amines the document tree to partition work among cores. To amor-
tize task scheduling costs across many nodes and improve locality,
the partitioner splits the tree into contiguous blocks. To load bal-
ance, the partitioner precomputes the assignment of task blocks
to cores using a heuristic that simulates work stealing. As with
visit order selection and data layout optimization, we autotune over
scheduler parameters.

Existing semi-static heuristics we tested were not load balanced,
while using dynamic work stealing to load balance exhibited no
speed up at all. Our use of work stealing as a heuristic helps connect
these approaches.

2. Background
In this section, we review layout solving. A layout engine solves
constraints such as for the size, position, and color of a visual
element. To efficiently do so, it solves all of them over a statically
determined visit order. The optimization problem is to pick the
most efficient order and further optimize individual traversals.

1 c l a s s Pass : ex tends R e c u r s i v e S e q u e n t i a l {
2 v i s i t (HBOX n ) {
3 n . BOXI [ 0 ] . y = n . y ;
4 n . BOXI [ 1 ] . y = n . y ;
5 n . BOXI [ 0 ] . x = n . x ;
6 n . BOXI [ 0 ] . v i s i t ( t h i s ) ; / / r e c u r
7 n . BOXI [ 1 ] . x = n . x + n . BOXI [ 0 ] . w;
8 n . BOXI [ 1 ] . v i s i t ( t h i s ) ; / / r e c u r
9 n . h = max ( n . BOXI [ 0 ] . h , n . BOXI [ 1 ] . h ) ;

10 n .w = n . BOXI [ 0 ] . w + n . BOXI [ 1 ] . w;
11 }
12 /∗ . . . v i s i t S , BOXI , l e a f . . . ∗ /
13 }
14 new Pass ( ) . t r a v e r s e ( t r e e ) ; / / s e q u e n t i a l i n t e r n a l l y

Figure 2: Sequential visitor

1 c l a s s Pass0 : ex tends TopDownPara l l e l {
2 v i s i t ( S n ) { n . BOXI . x = 0 ; n . BOXI . y = 0 ; }
3 v i s i t (HBOX n ) { n . BOXI [ 0 ] . y = n . y ; n . BOXI [ 1 ] . y = n . y ; }
4 v i s i t (LEAF n ) { n .w = 1 0 ; n . h = 1 0 ; }
5 v i s i t (BOXI n ) { . . . /∗ compute y ∗ / }
6 }
7 c l a s s Pass1 : ex tends B o t t o m U p P a r a l l e l {
8 v i s i t (HBOX n ) {
9 n .w = n . BOXI [ 0 ] . w + n . BOXI [ 1 ] . w;

10 n . h = max ( n . BOXI [ 0 ] . h , n . BOXI [ 1 ] . h ) ;
11 }
12 v i s i t (BOXI n ) { . . . /∗ compute w , h ∗ / }
13 }
14 c l a s s Pass2 : ex tends TopDownPara l l e l {
15 v i s i t (HBOX n ) {
16 n . BOXI [ 0 ] . x = n . x ;
17 n . BOXI [ 1 ] . x = n . x + n . BOXI [ 0 ] . w;
18 }
19 v i s i t (BOXI n ) { . . . /∗ compute x ∗ / }
20 }
21 new Pass0 ( ) . t r a v e r s e ( t r e e ) ; / / p a r a l l e l i n t e r n a l l y
22 new Pass1 ( ) . t r a v e r s e ( t r e e ) ; / / p a r a l l e l i n t e r n a l l y
23 new Pass2 ( ) . t r a v e r s e ( t r e e ) ; / / p a r a l l e l i n t e r n a l l y

Figure 3: Parallel visitors

As input, a layout engine takes a tree where attribute values of
some nodes are known. For example, in Figure 1(a), a layout de-
signer provides a tree with predefined widths and heights on leaf
nodes. Each node corresponds to a visual element: the engine must
compute any remaining attributes, such as absolute x and y coordi-
nates for all nodes (Figure 1(c)). The layout logic depends on the
layout language. In this case, the width w of an intermediate hori-
zontal box node (HBox) is the sum of its children widths (BOXI[0].w
and BOXI[1].w) and its height h is the maximum of their heights.
Dynamic data dependencies restrict the order in which attributes
may be evaluated (dashed lines in Figure 1(b)).

An efficient layout engine computes all attribute values over a
statically determined visit order. For a simple language of horizon-
tal (HBox) and leaf (Leaf) boxes, we must already choose between
sequential and parallel traversal patterns:

• Sequential: One recursive pattern instance can sequentially
solve any tree in the language. Figure 2 shows how using a
visitor [22]. Upon reaching an HBox node, the visitor sets y
attributes of the children and x of the left child, recurs on the
left child, uses the result to set the x of the right child, recurs on
the right child, and then uses both results to set w and h.
• Parallel: Figure 3 depicts an alternative visit order: a sequence

of 3 topologically parallel traversals. A top-down traversal com-
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1 HBox : BoxI
2 w = 0 . . + c h i l d r e n [ i ] . w
3 h = 0 . . max ( , c h i l d r e n [ i ] . w)
4 c h i l d r e n [ i ] . x = x . . + c h i l d r e n [ i − 1 ] .w
5 c h i l d r e n [ i ] . y = y

Figure 4: Encoding of the HBox widget in language β.

1 S → BOXI { BOXI . x = 0 ; BOXI . y = 0 }
2 BOXI →
3 HBOX
4 {w = HBOX.w; h = HBOX. h ; HBOX. x = x ; HBOX. y = y}
5 | l e a f
6 {w = l e a f .w; h = l e a f . h ; l e a f . x = x ; l e a f . y = y}
7 HBOX → BOXI BOXI {
8 BOXI [ 1 ] . x = x
9 BOXI [ 2 ] . x = x + BOXI [ 1 ] . w

10 BOXI [ 1 ] . y = y
11 BOXI [ 2 ] . y = y
12 h = max (BOXI [ 1 ] . h , BOXI [ 2 ] . h )
13 w = BOXI [ 2 ] . w + BOXI [ 2 ] . w
14 }
15 l e a f {w = 1 0 ; h = 10}

Figure 5: Attribute grammar for a language of horizontal boxes.

putes y attributes, then a bottom-up traversal computes w and h
attributes, and finally another top-down traversal computes x
attributes. To evaluate in parallel, each node visit is a task de-
pendent on its parent in a top down traversal and dependent on
its children in a bottom up one.

Many other visit orders also solve all attributes. Part of the opti-
mization problem is to pick the most efficient one.

Optimizing a pattern instance is difficult, in part, because the
computation is small. Meyerovich and Bodı́k [39] measure that,
on average, solving layout takes 84ms when loading pages on a
2.4GHz laptop. Treating every visit to a node as a dynamically
scheduled task, for example, would have high overhead. Our chal-
lenge is in finding the fastest visit order and efficiently implement-
ing each pattern.

3. Designing Parallel Grammars using Synthesis
FTL assists designing parallelizable attribute grammars. It stati-
cally checks an attribute grammar is well-defined [28, 29] and
automatically generates a parallel implementation. Designing lan-
guages with a particular intended parallelization scheme is difficult
due to non-local reasoning, so we also introduce a declarative lan-
guage to query and constrain visit orders. We explain these features
by demonstrating how a designer can extend the HBox language
while still supporting parallel evaluation.

3.1 Specifying an attribute grammar
FTL computes over a low-level attribute grammar representation.
Out of scope of this work, we compile 2 constraint languages to
attribute grammars: α [5], a bidirectional language, and β [2], an
object-oriented one. Figure 4 specifies the HBox widget in β.

Figure 5 fully specifies a language of horizontal boxes as an at-
tribute grammar. Terms outside of the braces define the tree struc-
ture as a context free grammar. A BOXI node has either a leaf ter-
minal or HBOX non-terminal, where an HBOX node has 2 BOXI
children. This example grammar implicitly encodes β’s class sys-
tem: BOXI encodes an interface implemented by leaf and HBOX.

Terms inside the braces of each production specify the absolute
coordinates (x, y) and sizes of nodes (w, h). For example, the start
node S positions the topmost box in the tree at the top left coor-

dinate (0, 0). Likewise, the width w of an instance of HBOX is the
sum of the widths of its two child nodes. Note that a programmer
does not specify when to compute the various attribute values.

3.2 Checking, testing, and inspecting an evaluator
FTL implements several traditional attribute grammar compiler
techniques [29] to support the edit/compile development cycle.

First, FTL checks if a language is well-defined and permits eval-
uation that is O(n) in the number of nodes. Satisfying these condi-
tions when defining features that can be composed like HBOX and
leaf nodes is difficult. For example, the CSS specification is am-
biguous: some of the ambiguities have been found and surface as
cross-browser incompatibilities, and it is not clear if all the ambigu-
ities have been found. [10, 39] Natural formulations of seemingly
simple features like percentage and automatically shrinking boxes
are fixed point computations, but this is often incorrect due to un-
desirable visualizations of the singularities [39] and poor perfor-
mance [45]. FTL checks that a syntactically well-formed input tree
has exactly 1 solution and that it can be found in O(n).

If an evaluator is possible, FTL generates an implementation
in C++ or HTML5, which can be tested. The sample language
(Figure 5) passes the checks, so FTL generates both C++ and
HTML5 implementations. The programmer can test either on an
input document that is syntactically HTML and CSS.

The designer may be interested in checking the evaluator’s visit
order has the correct performance properties, e.g., performs only a
few parallel traversals, and thus may inspect a summary:

1 S c h e d u l e =[
2 ( td , [ ( s , boxi , x ) , ( s , boxi , y ) ,
3 ( hbox , boxi1 , y ) , ( hbox , boxi2 , y ) ,
4 ( boxi , hbox , y ) , ( boxi , l e a f , y ) ] ) ,
5 ( bu , [ ( hbox , s e l f ,w) , ( hbox , s e l f , h ) , . . . ] ) ,
6 ( td , [ ( hbox , boxi1 , x ) , ( hbox , boxi2 , x ) , . . . ] ) ]

The output corresponds to the visit order for Figure 3. It is a se-
quence of (pi,ti) pairs, where pi is the pattern followed on traver-
sal i and ti is a list of attributes computed during it. Above, FTL
finds the parallel pattern sequence P = [ td , bu, td ], where td is a
top down traversal, bu is bottom up, and both are parallel internally.

3.3 Querying parallel behavior
FTL provides a Prolog [14] interface for declaratively debugging a
grammar for parallel visit orders. Consider extending the parallel
HBox language to support vertical boxes:

18 VBOX → BOXI BOXI {
19 BOXI [ 1 ] . y = y
20 BOXI [ 2 ] . y = y + BOXI [ 1 ] . h
21 BOXI [ 1 ] . x = x
22 BOXI [ 2 ] . x = x
23 w = max (BOXI [ 1 ] . w, BOXI [ 2 ] . w)
24 h = BOXI [ 2 ] . h + BOXI [ 2 ] . h
25 }

The designer reasons locally in changing the specification, but the
impact is global. In particular, adding the VBOX widget breaks
the original parallel schedule P = [ td , bu, td ]. The first pass can
no longer solve y attributes: VBOX nodes require unavailable h at-
tributes. The local specification change requires a global refactor-
ing of the evaluator that moves terms dependent on y attributes.

FTL can summarize all valid visit orders to reveal the impact:

?− s y n t h e s i z e ( Schedule , ( , [ ] ) ) ,
| f i n d a l l ( P i , member ( ( P i , ) , S c h e d u l e ) , P ) .

The first line uses FTL’s synthesize predicate to unify variable
Schedule with any valid order, similar to the original output sum-
mary, and the second line simplifies it as a sequence P of pi val-
ues using standard Prolog. All possible unifications are output.
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The search quickly finds P = [bu, recursive ], P = [ recursive ], and
P = [bu, td ]. The original 3-pass parallel visit order is not possible,
though the fully parallel order [bu, td ] is.

The designer can compare the original 3-pass visit order to
the new [bu, td ] one to understand which attribute computations
moved. She might ask, for sequence P = [bu, td ], what are the
corresponding t1 and t2:

?− s y n t h e s i z e ( [ ( bu , T 1 ) , ( td , T 2 ) ] , ( , [ ] ) ) .

The answer changes from the original unextended grammar: y at-
tribute computations for HBOX and BOXI move to the last traversal.

To avoid refactoring, the implementer may examine the viability
of keeping y attribute computations in the first traversal:

?− s y n t h e s i z e ( [ ( td , T 1 ) | ] , ( P r o g r e s s , Unsolved ) ) ,
| member ( ( hbox , boxi1 , y ) , T 1 ) ,
| member ( ( hbox , boxi2 , y ) , T 1 ) .

Variable Progress is unified with the list of (pi, ti) pairs of all lead-
ing correct traversals, and Unsolved with any remaining attributes,
namely those from subsequent traversal. In this case, as hbox.box1.y
cannot be solved in the requested first traversal, there is no initial
progress so the debug output shows all attributes remain unsolved.
A specification-level correction is therefore required to enable ini-
tial computation of y attributes, and further FTL functions can help
reveal the problematic dependency on attribute h.

Overall, we see FTL assists finding and debugging the paral-
lelism in an attribute grammar.

3.4 Constraining parallelism and order in evaluators
The synthesize predicate also helps satisfy embedding concerns.

Consider the following two constraints: y attributes must be
computed in the second traversal, which must be sequential. The
first constraint on order is common to layout frameworks that
dynamically compose with third party components. The second
constraint enables safely calling non-reentrant libraries. Both con-
straints are beyond canonical attribute grammar specifications.

The synthesize predicate can be used to express both constraints:

?− f i n d a l l ( ( Prod , Ver t , y ) , a t t r i b ( Prod , Ver t , y ) , As ) ,
| s u b s e t ( As , T 2 ) ,
| s y n t h e s i z e ( [ , ( r e c u r s i v e , T 2 ) | ] , ( , [ ] ) ) .

The only novel FTL construct in the query is predicate attrib ,
which is a relation naming production attributes. The query suc-
ceeds, returning a visit order with the desired staging of sequential
and parallel code. Consider manually adding these constraints to a
hard-coded implementation: significant global reasoning and refac-
toring would be involved instead of these 3 declarative lines!

4. Grammar Compilation as Synthesis
Our synthesizer must find every visit order (p, t) for a grammar,
but there are many. This section presents an optimized search that
reuses partial solutions, monotonically finds a valid t for a fixed
p, and employs a greedy heuristic. Once generated, the grammar
design language of the previous section can support queries over
these pairs and our code generator in the next section will convert
a pair into an executable evaluator and autotune over them.

4.1 Evaluator synthesis problem definition
The input is an attribute grammar ag = (G,A, F ) and set of at-
tribute compiler indicator functions χ = {χtd, χbu, χrecursive, . . .}
that recognize different patterns. The goal is to find all combina-
tions of using different patterns in χ for different traversals.

The first part of the input definition is a standard attribute gram-
mar. TupleG = (N,T, S, P ) is a context free grammar withN the
set of non-terminal nodes, T the terminal nodes, P the productions

1 INPUT : χ : { AG×{A t t r i b }×{A t t r i b }→{A t t r i b } }
× ag : AG

2 OUTPUT: p r e f i x e s : { (χp , {A t t r i b } ) }
3 p a r t i a l P r e f i x e s := { [ ] }
4 c o m p l e t e P r e f i x e s := Ø
5 ŵp := Ø
6 whi le p r e := p a r t i a l P r e f i x e s . remove ( ) :
7 p r e v i o u s := { attrib | (pi, ti) ∈ pre and attrib ∈ ti}
8 c a n d i d a t e s := ag .A − p r e v i o u s
9 f o r χp ∈ χ :

10 ti := c a n d i d a t e s
11 ok := f a l s e
12 whi le ¬ok and ti 6= [ ] :
13 i f ŵp [ ti, p ] ⊆ p r e v i o u s :
14 ok := t rue
15 e l s e :
16 ( ok , ε ) := χp ( ag , p r e v i o u s , ti )
17 ti := ti − ε
18 i f ok :
19 ŵp [ ti, χp ] := ŵp [ ti, p ] ∩ p r e v i o u s
20 i f ti = c a n d i d a t e s :
21 c o m p l e t e P r e f i x e s . add ( p @ [ ( p , ti ) ] )
22 e l s e :
23 p a r t i a l P r e f i x e s . add ( p @ [ ( p , ti ) ] )
24 re turn c o m p l e t e P r e f i x e s

Figure 6: Algorithm to find attribute grammar evaluators. Dynam-
ically programs over prefixes, incrementally refines weakest pre-
condition abstraction for χ, and performs greedy MSP heuristic.

over the nodes, and S ∈ N ∪ T some starting node. A and F label
each node X with a set of attributes AX ∈ A. Every production
(p = X0 → X1...Xp) ∈ P is likewise extended so that attribute
Xi.aj may be constrained as a function over some subset of the
production’s other attributes: these constraints are stored in set F .

Pattern compilation function χp : AG × P(A) × P(A) →
B×P(A) denotes an attribute grammar compiler that returns error
messages on failure. It is similar to an actual attribute grammar
compiler, except it does not generate an actual implementation. It
returns true for an attribute grammar if all instances of the attributes
in the last argument can be solved assuming preceding traversals
solved all instances of the attributes in the second argument. If
not all attributes in the last argument can be solved, χp returns an
error message: a subset of the attributes that could not be solved.
For example, χtd(ag,Ø, A) = (false, {V Box.y, . . .}), meaning
not all instances of VBox.y can be solved in an initial top-down
traversal.

We define solve(t, p) if and only if:⋃
ti = A ti

⋂
tj 6= Ø⇔ i = j

∧
χpi(ag,

⋃
j<i

tj , ti)

The first two properties define t as a disjoint partitioning of A. The
third property asserts each step of the traversal sequences solves the
intended attributes.

The problem is therefore to find all t, p such that solve(t, p).
A naı̈ve brute force algorithm that exhaustively tries all different
(t, p) sequences is too inefficient so the search must be optimized.

4.2 Reusing valid prefixes
We reuse knowledge of validity of prefixes of visit orders to exam-
ine longer ones that are suffixes.

The search algorithm generates increasingly long prefixes of
solutions. This corresponds to lines 6, 9, 16, and 20-23 of Figure 6.
Consider how to reach solution (t1t2, bu td). We first test (t1, bu)
by calling χbu(ag,Ø, t1) = (true,Ø). Upon success, we try com-
pletions (t1t2, bu bu), which fails withχbu(ag, t1, t2) = (false, ε),
and (t1t2, bu td), which succeeds as χtd(ag, t1, t2) = (true,Ø)
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and satisfies solve(t1t2, td bu). Contrast with initial attemptχbu(ag,Ø, t1) =
(false, ε): prefix (t1, bu) failed so there is no reason to try suffixes
(t1t2, bu td) nor (t1t2, bu bu).

Calls to χp are expensive, so we avoid many invocations
by checking against weakest preconditions [17]. For intuition,
consider the original grammar for which we provide solution
solve(t1t2t3, td bu td). To test alternative solve(t12 t3, recursive td)
where t12 = t1 ∪ t2, we need only invoke the compiler to check
χrecursive(ag,Ø, t12) = (true,Ø). Checkχtd(ag, t12, t3) = (true,Ø)
is avoided by fact χtd(ag, t1 ∪ t2, t3) = (true,Ø) computed in the
first solution. The insight is that changing the argument t1∪t2 with
an equivalent or bigger set of previously computed attributes will
not invalidate the pattern’s applicability for computing t3. There-
fore, invocation χtd(ag, t12, t3) = (true,Ø) is avoided by replac-
ing it with superset check t12 ⊇ t1 ∪ t2.

To employ the above reasoning, our algorithm uses and in-
crementally refines an approximation of the weakest precondi-
tion of satisfying each χp. The approximation ŵp(ti, pi) for call
χpi(ag, previous, ti) is one such that previous ⊇ ŵp(ti, pi) ⇒
χpi(ag, previous, ti). An invocation χpi(ag, previous, ti) is
skipped if the weakest precondition guarantees it succeeds, namely,
the attributes computed in previous traversals (previous) are a su-
perset of ŵp (line 14). We do not precompute the weakest precondi-
tion. Instead, every time a smaller subset of attributes is found suf-
ficient to compute ti for some pattern pi than the current ŵp(pi, ti)
entry, the weakest precondition is refined (line 19).

4.3 Fast schedule testing
To prune how many suffixes (t ti, p pi) are attempted for prefix
(t, p), we perform a monotonic search over valid ti. Not every ti
must be attempted. On failure output χpi(ag, t, ti) = (false, ε0),
the compiler guarantees any set ti − ε0 ⊂ t′i ⊂ ti will also fail.
The next tests are χpi(ag, t, ti − ε0), χpi(ag, t, ti − ε0 − ε1), etc.
(lines 16-17), until the empty set is reached (line 12). The initial
set of ti candidates are any attributes not previously computed
(“candidates = ag.A − previous”, line 8 of Figure 6). Mono-
tonically searching from this initial set finds all solving ti subsets.

To implement a χp function for a particular pattern, we con-
struct an iterative assume/guarantee [40] proof. Consider an initial
bottom up traversal when it reaches an HBOX node on some ar-
bitrary tree. The initial prospective ti is all attributes, A. For the
HBOX production, we therefore assume the traversal solved any
production attributes that are specified by semantic functions out-
side of the HBOX production, and using these assumptions, guar-
antee semantic functions of the remaining HBOX attributes can be
evaluated:

assmHBOX = {BOXI[1].w, BOXI[2].w, BOXI[1].h, BOXI[2].h}
grntHBOX = {w,h,BOXI[1].x,BOXI[2].x,BOXI[1].y,BOXI[2].y}

The dependencies for computingw and h are satisfiable by assump-
tions in assmHBOX , discharging part of the obligation. The re-
maining attributes depend on x and y, which are not computable
from the assumptions. Evaluating χbu therefore fails with at least
{BOXI.x,BOXI.y}.

Stated more generally, for each pattern, a proof for a gram-
mar is modularly constructed by decomposing on productions. At
the beginning of the traversal, all instances of attributes in t are
solved. When a traversal reaches an instance of a production, ti at-
tributes of all other production instances previously visited are also
assumed to be solved. The proof must then guarantee ti attributes
in the current production can be solved. Any attribute that cannot
be guaranteed is put in ε: the assumptions are too weak to prove
that it can be solved.

The search is pruned by removing uncovered error attributes
from the prospective set, so we take care to return a large set. Note

that similar reasoning for HBOX applied to the BOXI production
rejects all other x and y attributes. An error is the union of failures
from all productions rather than short circuiting on the first failure
found. In the example, the search succeeds on just the second
attempt, calling χp with w and h attributes.

4.4 Pruning similar results with the MSP heuristic
We use a greedy heuristic to quickly compute the fast and represen-
tative minimal solving prefix setMSP . TheMSP heuristic prunes
away searches for supersequences of any sequence (t, p) ∈ MSP
that was already found and ignores permutations of t.

Consider pattern sequences [bu td ] and [bu bu td ], where the
first pattern computes both w and h attributes in the first traversal,
while the second pattern computes h in a new intermediate traver-
sal. Delaying evaluation of h attributes in the first traversal allows
introduction of an intermediate bu traversal: while there are theo-
retical performance benefits, we observed none in our implementa-
tion. We avoid these sequences by greedily computing as many at-
tributes in a prefix as possible: the search for a ti for some pi stops
at the first, and therefore biggest, valid ti (line 12 of Figure 6).

Many t are possible for any sequence p, which we also ignore.
First, implicit to our formalism, different permutations of ti are
ignored. For example, we observe minor benefit of swapping the
order of statements in a visit function, such as swapping lines 1 and
2 of Figure 2. Second, we avoid repartitioning t for the same p. We
did observe minor benefit from changing which ti an attribute is
computed (Section 7.3), though more so for final code generation
than interactive grammar design or search for the fastest p. The
MSP heuristic therefore ignores both variations in t by representing
ti as a set rather than an ordered list (lines 8, 10, 17) and greedily
finding the first t for a given p.

5. Optimizing Data Layout
FTL performs data layout optimizations for 2 related purposes.
First, to improve even sequential code performance due to the
similarity of grammar evaluation to pointer chasing. Second, to
improve scaling of parallel evaluation.

We found it useful to optimize locality, prefetching, and size.
Data layout optimization algorithms and automation techniques for
these tasks are well-studied in general but typically not in a unified
and automated way. We implement multiple algorithms for each
task and FTL autotunes over which to use and how.

In concurrent work, [3] we report a novel data layout optimiza-
tion yielding a 3.8x speedup over techniques presented here. These
are complimentary as they target performance not directly related
to MIMD parallelism: branch prediction, SIMD evaluation, etc.

5.1 Compressed, high locality layout
FTL chooses from a variety of tree data layout options to improve
spatial and temporal locality:

• C++ collections (the embedding language) or contiguous arrays
• depth-first or breadth-first orderings
• blocking [25] of subtrees
• aligned data or unaligned but more packed data

We also optimize tree traversal and structure access. The traver-
sal order matches the layout order [13]. As a simple example of op-
timizing access for a particular data structure, inorder traversal of a
block is performed by just successively incrementing a pointer.

FTL compresses the tree to better utilize bandwidth and de-
crease the working set size. Similar to Lattner and Adve [34], node
references are encoded as relative offsets rather than native point-
ers. We also exploit the tree data structure to avoid some pointers.
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(a) Naı̈ve pointer-based tree representation

a b c d e f2 11 0 3 0 0 1 0 0 0 0

has right sibling (1 bit)leftmost child offset (7 bits)

contiguous 
siblings

contiguous inorder (dfs, bfs, ...) layout of block

contiguous 
siblings

(b) Compressed tree encoding

Figure 7: Pointer-based (a) and relatively indexed (b) tree represen-
tation. Compressed uses 96% fewer bits to encode the structure of
the depicted tree on a 64-bit architecture.

For example, as siblings are adjacent in certain encodings, we do
not need sibling pointers. Furthermore, as there are typically few
siblings, instead of a counter of number of children (or siblings),
we use an isLastSibling bit. Figure 7 depicts a tree using point-
ers and one of our representations: in the example, the compressed
form uses 96% fewer bits on a 64-bit architecture.

5.2 Prefetching
FTL supports several forms of prefetching to avoid waiting on data
fetches. First, as the above optimizations match data access patterns
with the data layout, hardware prefetchers can automatically pre-
dict and prefetch data. Second, FTL also inserts explicit prefetch in-
structions as part of the traversal. Finally, runahead processing [18]
pre-executes data access instructions. A helper thread traverses a
subtree ahead of a corresponding evaluator thread, requesting node
data while the evaluator is still computing an earlier thread.

5.3 Code generation and autotuning
Which optimizations to use and how is not obvious, so FTL in-
corporates them by autotuning. We implement the optimizations
generically so grammar designers do not need to manually use
them.

Autotuning supports optimizations sensitive to the input gram-
mar, hardware configuration, and other optimizations. For exam-
ple, when blocking, block size is sensitive to both the grammar and
hardware cache sizes. Likewise, while more threads are generally
better, we observed slowdowns on different schedules on all de-
vices examined when trying different thread count increases.

The space of autotuning configurations is large and evaluating
a individual configuration is slow enough that brute force explo-
ration is too expensive. We currently manually preselect a set of
optimization combinations and bound parameter ranges. E.g., we
always use a blocked layout on parallel architectures as our parallel
optimizations require it, and do not try many more virtual threads
than hardware threads available. Finally, we stage autotuning for
fast visit orders (Section 4) to occur before autotuning the data lay-
out of selected variants.

Adding an optimization to FTL is generally a combination of
modifying the visit-order-to-C++ backend and adding new macros
or libraries to the C++ runtime. For example, pointer compres-
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Figure 8: Semi-static scheduling of a blocked 64 node binary tree
for 3 cores by partitioning with an approximation of work stealing.
Node labels based on a breadth first ordering.

sion in the style of Lattner and Adve [34] is a 16 line change to
the code generator and 200 to the runtime. Each is written to be
conditionally compiled according to a compilation constants file or
controlled by a runtime parameter. A configuration generator emits
combinations of optimizations.

6. Parallel Evaluation
FTL treats blocks as coarse task units and uses a novel approach
to precompute their schedule. Our insight is two-fold. First, FTL
partitions the blocks among cores for the low-overhead and locality
benefits of semi-static scheduling. Second, to approximate the load
balancing benefits of runtime work stealing, FTL’s novel partitioner
simulates it. Finally, we autotune over algorithms and settings.

6.1 Following a schedule
The partitioner computes a schedule of blocks that respects the
topological dependencies of our traversal patterns. Each core is
assigned a distinct sequence of blocks: top-down traversals use a
forwards iteration and bottom-up uses backwards. Block layout
follows this order. Synchronization is not needed to know which
block to evaluate next, per-node overhead is low, and intermediate
nodes of blocks are core-local.

Starting evaluation of a block does synchronize. For example, a
top-down traversal waits on the parent of a block, and a bottom-up
waits on all of its child blocks. The grammar analysis guarantees
that these are the only dependencies. The ready check is simple
because the owner of the other block is known. E.g., blocks from
the same core are guaranteed to be ready.

6.2 Partitioning with approximate work stealing
To partition task blocks of nodes across cores, we introduce a novel
heuristic: approximating work stealing. The goal is to both load
balance and achieve locality.

Work stealing is common for dynamic scheduling [9, 41]. From
one time step to the next, a core runs its most recently spawned
task (under some bound, e.g., 1). This promotes locality within the
core. When the local task queue is exhausted, the idle core selects a
victim core and picks the task with hopefully the least locality and
most remaining work: the least recently spawned task.

FTL’s partitioner sequentially simulates performing parallel
traversal under a work stealing schedule. Instead of actually vis-
iting nodes, it uses a simple estimate of block time as the node
count. Figure 8 depicts simulating this process for scheduling 16
blocks on 3 cores. The simulation terminates on the 7th step: it
estimates a speedup of 2.13x, which is optimal.
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6.3 Tuning
FTL also autotunes its parallel runtime. Options include:

• thread pinning and initial data partitioning
• number of threads, use of hyper-threads, and hardware mapping
• block synchronization: lock variants and yield/stall functions
• use of a thread warm-up period

In addition, FTL autotunes over more established partition-
ing algorithms and task schedulers beyond the ones above. These
include a parallel for-all partitioner, and, using officially recom-
mended TBB patterns [41], several canonical dynamically sched-
uled divide-and-conquer and graph schedulers. The parallel for-all
works by splitting a tree into a sequential root subtree and disjoint
descending subtrees that can be computed independently. It avoids
synchronization at the expense of load balancing.

7. Evaluation
We evaluate the key contributions of FTL. First, we show that FTL
supports parallel language design by automatically finding paral-
lelism in 5 different types of layout languages and by supporting
useful queries. Second, we show that autotuning visit order selec-
tion yields a 32% speedup. Third, enabling querying and tuning, the
set of MSP visit orders for a CSS subset is synthesized in 6 minutes.
Fourth, we show that the combination of data layout optimization
and abstract work stealing enables strongly scaling parallel evalua-
tion.

Overall, we achieve a 5.2x speedup on a single-socket quad-
core processor and a 9.3x speedup on a dual-socket one with 8 total
cores. Strong scaling is 4% and 14% below the ideal speedup, re-
spectively. On 4 cores, the for-all heuristic coupled with data
layout optimizations yields a 1.8x speedup: even without data lay-
out optimizations, the work stealing heuristic increases speedup to
2.8x. Adding data layout optimizations achieves the 5.2x speedups.

7.1 Methodology and Baseline
We evaluate performance on 4 processors: server1 (2 socket x quad-
core 2.3GHz AMD Opteron 2356 512KB L2, GCC 4.3 -O3, Linux
2.6.35), server2 (quad-core 2.7GHz Intel Nehalem X5550 8192KB
L2,, GCC 4.6 -O3, Linux 2.6.36), laptop (dual-core 2.7GHz Intel
Core i7 256KB L2, OS X 10.6.5, GCC 4.5 -O3), and mobile (dual-
core 1.6GHz Intel Atom 330 512KB L2, GCC 4.6 -O3, Linux 3.1).
Trials are repeated 25 times: 95% confidence of standard error is
within 5%. To model the scenario of initial document layout, a
single trial consists of first parsing and other preprocessing for a
document and then measuring the time to solve layout once.

The grammar is based on a subset of CSS [10, 39]. The grammar
includes horizontal, vertical, and text boxes with padding, margin,
alignment, sizes, and color options. We test randomly generated
1,000 node trees to reflect the size of modern webpages. One
experiment uses a different setup to show the impact of varying
the workloads.

Baseline performance is sequential evaluation of the shortest
synthesized sequence of parallel traversals. To enable basic opti-
mizations such as hardware prefetching, the data layout is a vec-
tor of consecutively laid out (uncompressed) structs. In concurrent
work for a similar workload [3], this baseline is reported to exhibit
a 1.3x speedup over the random allocation of commercial browsers.

7.2 Designing parallelizable grammars
FTL automatically found parallelism in several layout languages
and helped debug them. We tested several types of layout languages
specified in α [5] and β [2], which compile to attribute grammars: a
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flow-based language (a subset of CSS), a grid-based language (e.g.,
Java Swing [19]), and a proposed flex-box model [16]. We also
examined languages beyond documents and boxy UIs: a treemap
widget data visualization widget and a concentric circle widget
similar to menus found in some smartphone interfaces. FTL found
parallelism in each.

FTL’s analysis support was used to specify 3 of these systems.
We often found ourselves reasonings in terms of sequences of pat-
terns, and, desiring a particular one, would query for it. When it
was invalid, we would examine the error output of the synthesize
call and then perform more fine-grained data dependency queries.
For several grammars, FTL surprised us by finding faster visit or-
ders than those we had in mind. Sometimes, the surprising order
revealed an error. For example, we encoded foreign paint calls as
passing a phantom value representing canvas state: we missed a
dependency, so FTL synthesized parallel paint calls, which would
have erroneously overlapped shapes. Simpler than finding the for-
gotten dependencies is to constrain paint assignments to be in the
same sequential traversal.

7.3 Optimization through synthesis
We evaluate the speedup of tuning over different visit orders (t, p
pairs) on laptop , which, in one case, is 32%. We also validate
the MSP heuristic, showing no performance loss from ignoring p
supersequences and only 0-6% loss from greedily selecting only
one t variant.

Varying attribute partitioning t for a particular pattern se-
quence p improves performance. We generated 24 different p se-
quences and, for each, anywhere from 2 to 190 different t par-
titions of A that solve them. As the number of t variants ex-
amined increases, the speedup of the fastest vs. slowest variant
(MAXa,b∈T

time(a,p)
time(b,p)

) increases. For the p with the most at-
tempted variants (|T | = 190), we observe a 12% benefit for se-
quential evaluation and 18% benefit on dual-core laptop . Generally,
the benefit is greater for parallel evaluation than sequential.

Varying p is also beneficial. We generated the MSP set and
compare relative performance (Figure 9). For each pair in MSP,
we compare its performance to the slowest MSP member when
run on single-core (x-axis) and on dual-core (y-axis). Interestingly,
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Figure 11: Abstract work stealing is the most effective scheduler
(a) and traversal scales due to data layout optimizations (b). Visit
order is the shortest sequence of parallel patterns. Figure (a): AWS
= abstract work stealing, for-all = semi-static for-all, TBB-T
= TBB tasks, TBB-G = TBB graph; all with compressed layout.
Figure (b): baseline = abstract work stealing, C = adding pointer
compression, MS = adding tuning over thread pinning assignment.

there is no overlap in the top 4 visit orders for dual-core vs. single-
core evaluation. Using the same traversal visit order across different
hardware can be very inefficient.

The MSP heuristic finds visit orders that are better or competi-
tive with related non-MSP variants. Recall a non-MSP variant is a
(p, t) pair where p is a supersequence of a pair in MSP or t a per-
mutation. All supersequence p variants cause slowdowns: the over-
heads of extra traversals seem prohibitive. Next, we check heuristic
choice to greedily pick t such that an attribute is computed in the
first possible traversal. Examining speedup of trying non-MSP t

variants (MAX(u,p)∈non-MSP∪{t}
time(t,p)
time(u,p)

shown in Figure 10) re-
veals a benefit of less than 3%. Furthermore, the speedup is lower
for shorter, more optimal visit orders, for which we note there are
also fewer t variants.

7.4 Fast synthesis
We evaluated query language performance, finding the synthesizer
and query tool fast enough to be part of the edit/compile cycle. The
underlying synthesis algorithm is interpreted sequentially in Prolog
on laptop .

Queries about dependencies between attributes are interactive.
In contrast, streaming enumeration of visit orders ran for a day
without terminating. By restricting the search to MSP variants, all
evaluators are found and code generated in 6 minutes. Incremental
queries or those inspecting individual evaluators, such as requesting
all starting with pattern sequence td bu, ran interactively without
precomputing the traversals as they prune the search space.

7.5 Effective task scheduling
Scheduling with an abstract work stealing partitioner (aws) is the
only scheduler that yielded more than a 1.5x speedup. We also show
strong scaling for different hardware, grammars, and trees.

Sequential overhead is low when comparing aws to sequential
evaluation: the performance difference is within the error bound.
Our intuition is that both schedules are depth-first traversals over
blocks, with only minor differences in logic when picking the next
block. We do not measure schedule generation, but note that in the
best schedule for laptop , maximum block size for a subtree is 102;
the number of blocks for the partitioner to traverse is low.

Using aws outperforms any of the other task scheduler tested
by at least 3x on one socket of server1 (Figure 11(b)). Dy-

Total speedup % of ideal scaling
Cores Cores

Processor 1 2 4 8 2 4 8
server1 1.4x 2.4x 5.2x 9.3x 89% 96% 86%
server2 1.4x 2.5x 5.2x n/a 89% 94% n/a
laptop 1.4x 2.1x n/a n/a 78% n/a n/a
mobile 1.3x 2.2x n/a n/a 86% n/a n/a
average 1.4x 2.3x 5.2x 9.3x 86% 95% 86%

Figure 12: Speedups and strong scaling across different hardware.
Baseline is uncompressed sequential traversal. Visit order is the
shortest sequence of parallel patterns. Right columns depict percent
of perfect scaling. For example, 100% for 4 cores would indicate a
4x speedup over evaluation on one core using the same optimiza-
tions.

namic task scheduling in TBB nor its dynamic graph sched-
uler yielded speedups. Using a different semi-static partitioning,
parallel-for, yields a 1.5x speedup over its sequential version.
Analyzing the expected speedups under our simple cost model,
we found the schedule imbalanced. Even without data layout op-
timizations, our aws achieves a 2.8x speedup. Incorporating them,
the total speedup is 5.2x over the sequential baseline.

7.6 Data layout optimization and tuning
We show that our data layout optimizations speed up sequential
performance by 26% and are an important part of parallelization
by improving strong scaling to reach 4% of ideal from an initial
low 40% of ideal. Furthermore, we show benefits from autotuning
over optimizations and their parameters.

Figure 11(b) depicts the sequential and parallel benefits of 2
data layout optimizations for abstract work stealing. The optimiza-
tions are compressing data and/or changing thread-to-core map-
ping. First, using both layout optimizations improves sequential
performance by 1.3x. Second, data layout optimize achieves strong
scaling. Using neither optimization, speedup is 30% from ideal
scaling on 4 cores (2.8x out of ideal total 4x), but with both, it
is 4% from ideal scaling (5.2x out of ideal total 5.4x). Data layout
optimization improves sequential performance and achieves strong
scaling of parallel evaluation on one socket of server1 . Speedup less
strongly scales when adding cores on the second speedup: 14% of
ideal for a 9.3x total speedup.

Autotuning is effective. For example, block size depends on the
grammar, hardware cache size, and number of threads. On server1 ,
block sizes between 15-30 are best across various core counts:
on both 4 and 8 cores, for example, they have an average 18%
speedup over using a block size of 60. Even picking the number
of threads should be tuned. Adding a 5th core to server1 , which
involves running on a second socket, has only a relative speedup of
7%, with scaling only strong again on adding further second socket
cores. Finally, the same algorithms were typically selected but not
always. As a sample exception, the choice between depth-first and
breadth-first layout within a block only mattered on mobile.

7.7 Varying workloads
Different workloads perform well under our approach. In Fig-
ure 12, we show strong speedups across different hardware. Se-
quential speedup from data layout optimization is 28-40% and scal-
ing is generally 4-14% of ideal. One exception is laptop , which
is only 78% of ideal scaling: APIs in OS X does not support our
thread pinning optimizations. To model more complex languages,
we repeated each loop 5 times: scaling is still strong on server1
(e.g., 86% of ideal on 4 cores). We also modeled increasing page
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size by 5x, as might be seen in a data visualization. For example, 4
cores of server1 achieves 83% of ideal scaling.

8. Related Work
Layout language implementation is well-studied. Badros presents
the Cassowary [7] linear constraint solver, which Badros et al. use
for the SCWM window manager [8]. Wang and Wood [46] show
formatting constraints that require richer solvers; Lin [35] imple-
ments basic document layout by interleaving Cassowary calls with
manually implemented solvers. Due to concerns in performance,
expression, etc., commercial webpage layout engines are manually
implemented as a sequential sequence of visitors [22, 24].

Parallel browsers are of recent interest. Jones et al. [27] propose
both parallelizing individual components and employing a concur-
rent architecture. Commercial browsers perform GPU-accelerated
rendering and, based on subsequent work by Meyerovich and
Bodı́k [39] and Badea et al. [6], layout preprocessing (templat-
ing) on multiple cores. Other compute-bound browser components,
such as lexing [27] and parsing [20], are examined in literature.

Parallel layout is an open challenge. Brown [11] propose apply-
ing task parallelism, which Meyerovich and Bodı́k [39] implement
using Cilk [9] and TBB [41] to weakly scale a subset of CSS. Bur-
ckhardt et al. [12] show the task parallel Revisions framework also
achieves weak scaling. FTL strongly scales on multicore hardware.

Browsers load independent resources in parallel, which can be
used for parallel layout by decomposing a page into independent
units. Concurrent work by Anonymous [4] lays out a page on a
proxy server, rewrites it as visually disjoint documents, and sends
them to a client incorporating shared memory parallelism optimiza-
tions similar to those of Meyerovich and Bodı́k [39] for parallel
rendering. We parallelize by optimizing just the layout engine.

Attribute grammars, introduced by Knuth [30] to define language
semantics, are tractable for static analysis and optimization. Saraiva
and Swierstra [43] specify non-automatic HTML table layout with
attribute grammars and Meyerovich and Bodı́k [39] examine CSS.

Kastens [29] presents a sequential evaluator generator for the
class of ordered attribute grammars; most grammar compilers are
similar. FTL instead finds an individual variant using a monotonic
search and can generate multiple variants. Our approach supports
tuning as well as constraints and queries over evaluators. The MSP
heuristic refines the usual greedy heuristic to consider multiple p
sequences.

Jourdan [28] surveys parallel attribute grammar evaluators.
Most similar to FTL is their technique of analyzing the grammar for
subtree visit recursions with no data dependencies that can thus be
computed independently in parallel. Motivating our work, Jourdan
also presents a work stealing scheduler and observes challenges in
strong scaling. Our use of specialized parallel patterns is novel.

Incremental evaluators are a complimentary approach [12, 42].

Data layout optimization is well-studied. For compression, we
encode a variant of the pointer representation of Lattner and
Adve [34]. Our use of a small set of pointers is a common man-
ual practice. More aggressively, browsers trade spatial locality for
smaller representation size by aliasing identical node style data.
Ananian and Rinard [1] propose compressing individual data fields
with a bit flag and auxiliary structures: the flag indicates whether
to use a default class value or lookup a non-default instance value.

Fine-grained approaches such as the structure split coallocation
of Chilimbi et al. [13] improve spatial locality. We optimize tem-
poral locality by tiling [25], pinning, and tuning the tree layout;
concurrent work by Jo and Kulkarni describes a similar technique
for DAGs [26]: point blocking. They study large graphs; we find
incorporating further optimizations is useful for small ones.

In concurrent work [3], we manually cluster layout to optimize
single-core behavior: branch prediction, SIMD utilization, applica-
bility of compiler optimizations such as hoisting, etc. FTL’s code
generation and autotuning support might automate this technique.

Data structure selection is examined early on by Low [36] for ab-
stract data types in an ALGOL-60 variant. Recent work by Hawkins
et al. examines exposing and implementing multiple pointer-based
representations [23] satisfying the same relational interface. Sup-
porting data layout optimizations used by FTL remains a challenge.

The superoptimization project [38] by Massalin generates func-
tionally equivalent programs based on a low-level instruction set
andFrigo and Johnson [21] generates FFTW patterns. FTL searches
for valid different traversal sequences.

FTL is similar to the ATLAS [47] framework for linear alge-
bra in that it autotunes over parameters such as block size to opti-
mize for a particular device. In contrast, cache oblivious algorithms
for FFTW [21] asymptotically optimize for general architectures
but may be less efficient on any individual device. Autotuning is
actively being applied to further domains, such as work in sten-
cils [15] by Datta et al.: we examine computations over trees.

MIMD task and graph languages generalize over grammars. To
exploit multicore architectures for task parallel programs, work
stealing systems such as Cilk [9] and TBB [41] use a runtime sched-
uler to load balance tasks. Programmers must provide a task paral-
lel decomposition and manually manage data layout. We were not
able to achieve strong scaling. Similar to FTL, Kulkarni et al. [32]
specialize work stealing for iterative computations over graphs:
blocking subgraphs improves locality and amortizes overheads. We
further decrease overheads with more static approaches.

Cluster computing for large graphs as in Pregel [37] has resur-
gent interest. We focus on the complimentary single-node case.

Kwok and Ahmad [33] survey static DAG scheduling. It is NP-
complete when node weights are non-uniform. Unlike FTL, many
techniques assume message passing and no temporal locality. We
approximate work stealing as a fast, simple, and effective semi-
static partitioner. Irrespective of the schedule quality, much of our
work is to eliminate overheads.

9. Conclusion
We have presented FTL, a system for designing and implementing
parallel layout languages. We show how to achieve strong scaling
by combining contemporary and novel techniques, and believe FTL
is a powerful foundation for future work.

The small nature of the computations challenge effective paral-
lel evaluation. First, we show the importance of finding a good se-
quence of tree traversals, which we address using a novel synthesis-
based grammar compiler. Using it, we provide an autotuner over
schedules and a novel parallel language design tool. Second, we
show how to optimize data layout and third, present a new semi-
statically task scheduler: without both, parallel evaluation did not
scale. Overall, we achieve a 5.2x speedup using 4 cores and even
higher speedups on multi-socket devices. Individual results, such
as our parallel language analysis tools or abstract work stealer, can
be used independently.

FTL is a foundational approach towards building future web
browsers and layout languages because it separates layout language
design, analysis, and implementation. A key demonstrated result is
that we achieve the first strongly scaling multicore layout engine.
Further open optimization challenges, such as SIMD evaluation [3],
may now also be tractable. Challenges not related to performance
might now also be overcome. For example, we are considering
verification and debugging support for layout languages.
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