Cascading Style Sheets Level 2 Revision 1 (CSS 2.1) Specification

W3C
Cascading Style Sheets Level 2 Revision 1
(CSS 2.1) Specification

W3C Recommendation 07 June 2011

This version:
http://mww.w3.0rg/TR/2011/REC-CSS2-20110607|[p. ??]

Latest version:

[http:/lwww.w3.0rg/TR/CSS2|[p. ?7]

Previous versions:
[Rttp://www.w3.0rg/TRI2011/PR-CSS2-20110412 [p. 7]
[Rttp://www.w3.0rg/T RI2008/REC-CS52-20080411] [p. 27

Editors:

[Bert Bog|[p. ??] <bert @w3.0rg>
[p. ??] <tantek @cs.stanford.edu>
[p. ??] <ian @hixie.ch>

[Hakon Wium Lie|[p. ??] <howcome @opera.com>

[p. ?7]

Please refer to the [errata] [p. ??] for this document.
This document is also available in these non-normative formats: [p. ?7],

[ozip'ed tar file] [p. 2?] , zip file] [p. ??] ,[azip’ed PostScrip [p. ??] ,[PDH [p. ??] . See
alsomno ?7].

Copyrightl[p. ??] © 2011 [World Wide Web ConsortiumW3d] [p. ??] ©®
v Massachusetts Institute of TechnologyMIT] [p. ??] ,[European Research Consortium|
for Informatics and MathematicsERCIM p. 22] . Keid [p. 22]), All Rights Reserved!
W3cClliability] [p. ?7?] , trademarK [p. ?7?] and [document use] [p. ??] rules apply.

Abstract

This specification defines Cascading Style Sheets, level 2 revision 1 (CSS 2.1).
CSS 2.1 is a style sheet language that allows authors and users to attach style (e.qg.,
fonts and spacing) to structured documents (e.g., HTML documents and XML appli-
cations). By separating the presentation style of documents from the content of
documents, CSS 2.1 simplifies Web authoring and site maintenance.

CSS 2.1 builds on CSS2[[CSS2] which builds on CSS1[CSS1] It supports
media-specific style sheets so that authors may tailor the presentation of their docu-
ments to visual browsers, aural devices, printers, braille devices, handheld devices,
etc. It also supports content positioning, table layout, features for internationalization

7 Jun 2011 17:58 1

Cascading Style Sheets Level 2 Revision 1 (CSS 2.1) Specification

and some properties related to user interface.

CSS 2.1 corrects a few errors in CSS2 (the most important being a new definition
of the height/width of absolutely positioned elements, more influence for HTML's
"style" attribute and a new calculation of the ’clip’ property), and adds a few highly
requested features which have already been widely implemented. But most of all
CSS 2.1 represents a "snapshot" of CSS usage: it consists of all CSS features that
are implemented interoperably at the date of publication of the Recommendation.

CSS 2.1 is derived from and is intended to replace CSS2. Some parts of CSS2
are unchanged in CSS 2.1, some parts have been altered, and some parts removed.
The removed portions may be used in a future CSS3 specification. Future specs
should refer to CSS 2.1 (unless they need features from CSS2 which have been
dropped in CSS 2.1, and then they should only reference CSS2 for those features,
or preferably reference such feature(s) in the respective CSS3 Module that includes
those feature(s)).

Status of this document

This section describes the status of this document at the time of its publication.
Other documents may supersede this document. A list of current W3C publications
and the latest revision of this technical report can be found in the|W3C technicall
[reports index at http://www.w3.0rg/TR/|[p. ??]

This document has been reviewed by W3C Members, by software developers,
and by other W3C groups and interested parties, and is endorsed by the Director as
a W3C Recommendation. It is a stable document and may be used as reference
material or cited from another document. W3C's role in making the Recommendation
is to draw attention to the specification and to promote its widespread deployment.
This enhances the functionality and interoperability of the Web.

The [p. 2?]) public mailing listwww-style@w3.org] [p. ??] (see [instruc]
[p. ??]) is preferred for discussion of this specification. When sending e-mail,
please put the text “CSS21” in the subject, preferably like this: “\[CSS21] [Jsummary
of comment[]’

This document was produced by the [CSS Working Group] [p. ??] (part of the[Style]
[p. 272]).

This document was produced by a group operating under the[5 February 2004
[W3C Patent Policy|[p. ??] . W3C maintains a[public list of any patent disclosures|
[p. ??] made in connection with the deliverables of the group; that page also includes
instructions for disclosing a patent. An individual who has actual knowledge of a
patent which the individual believes contains|Essential Claim(s)|[p. ??] must disclose
the information in accordance with|section 6 of the W3C Patent Policy|[p. ?7] .

The Working Group has created a [p. ??] and an|implementation report,
[p. ?7]

2 7 Jun 2011 17:58

Cascading Style Sheets Level 2 Revision 1 (CSS 2.1) Specification

All changes since the previous Working Draft, the previous Candidate Recommen-
dation and the previous Recommendation are listed in[appendix CJ[p. 329]

7 Jun 2011 17:58 3

Cascading Style Sheets Level 2 Revision 1 (CSS 2.1) Specification

Quick Table of Contents

[L About the CSS 2.1 Specificationl 27
[2 Introduction to CSS 2.1| 35
I3 Conformance: Requirements and Recommendatlonsl 43
|4 Syntax and basic datatypes] 49
. Y 4 4
|6 ASS|gn|ng property values Cascadlng and Inhentancel S L]
e K0 4
8 Box model . I
[9 Visual formatting modell e 2 4
[10 Visual formatting model detailsf| 171
[11 Visual effects|19
|12 Generated content, automatic numberlng and Ilstsl 203
|13 Paged medial e 228
[14 Colors and Backgrounds| 233
- |
i Y 4
e 51¢)
[18 User mterfacel . s s 297
[Appendix A. Aural style sheetsl - {0 Y
[Appendix B. Bibliography]325
[Appendix C. Changes| . . N Y24
[Appendix D. Default style sheet for HTML 4| 4583
[Appendix E. Elaborate description of Stacking Contexts] 455
[Appendix F. Full propertytablel 4k9
[Appendix G. Grammarof CSs21 467
[Appendix I. Index| e ¥ 45

4 7 Jun 2011 17:58

Cascading Style Sheets Level 2 Revision 1 (CSS 2.1) Specification

Full Table of Contents

[1 About the CSS 2.1 Specification|
[1.1 CSS 2.1 vs CSS 2
|1.2 Reading the specification|
[1.3 How the specification is organized|
[1.4 Conventions|

|1.4.1 Document language eIements and attnbutesl

[1.4.2 CSS property definitions]
1.4.2.2 Initial
[1.4.2.3 Applies to|
[1.4.2.4 Inherited|
[1.4.2.5 Percentage values|
[1.4.2.6 Media groups|
[1.4.2.7 Computed value]
|1.4.3 Shorthand properties|
[1.4.4 Notes and examples|
[1.4.5 Images and long descriptions| .
|1.5 Acknowledgments|
[2 Introduction to CSS 2.17|
[2.1 A brief CSS 2.1 tutorial for HTMLI
[2.2 A brief CSS 2.1 tutorial for XML
[2.3 The CSS 2.1 processing model|
[2.3.1 The canvas|
[2.3.2 CSS 2.1 addressing modell
[2.4 CSS design principles] .
I3 Conformance Reqwrements and Recommendatlonsl
[3.2 UA Conformancel
[3.3 Error conditions)| .
[3.4 The text/css content typel
4 Syntax and ba5|c data types|
4.1.1 Tokemzatlonl
[4.1.2 Keywords| .
|4.1.2.1 Vendor-specific extenS|ons|
|4.1.2.2 Informative Historical Notes| .
[4.1.3 Characters and case|
4.1.4 Statementsl

|4 1 7 Rule sets declaratlon blocks and selectorsl

7 Jun 2011 17:58

27
27
28
28
29
29
29
29
31
31
31
31
31
32
32
32
33
33
35
35
38
39
40
40
41
43
43
47
48
48
49
49
50
53
54
54
55
56
57
57
58

Cascading Style Sheets Level 2 Revision 1 (CSS 2.1) Specification

|4.1.8 Declarations and properties)] &9
4.1.9 Commentsf &0

[4.2 Rules for handling parsing errors| 60
4.3Valuesf 63
[4.3.1 Integers and real numbers| 863
4.3.2lengthy 63
|4.3.3 Percentages] &7
4.3.4URLsandURIS] 67
4.35Counters| 68
|4.3.8 Unsupported Values} 171

|4.4 CSS style sheet representationf 71
|4.4.1 Referring to characters not represented in a character encodingf4

[5.1 Pattern matching| Y 44
[5.2 Selectorsyntaxl 719
5.2.1 Groupingl19
5.3 Universal selectof 80
5.4 Type selectors| 80
[5.5 Descendant selectors] 80
|5.6 Child selectors|, 81
[5.7 Adjacent sibling selectors], 81
[5.8 Attribute selectors] 82
[5.8.1 Matching attributes and attribute valuesf 82
|5.8.2 Default attribute valuesinDTDs, 84
|5.8.3 Class selectors| 85

5.9 1D selectors| 86
[5.10 Pseudo-elements and pseudo-classes] 87
[5.11 Pseudo-classes] 88
[5.11.1 :first-child pseudo-class] 88
[5.11.2 The link pseudo-classes: :link and :visited| 89
[5.11.3 The dynamic pseudo-classes: :hover, :active, and :focus| . 89
[5.11.4 The language pseudo-class: :lang| . K
[5.12 Pseudo-elements] 9
[5.12.1 The :first-line pseudo-element N 4
[5.12.2 The :first-letter pseudo-elementy 94
[5.12.3 The :before and :after pseudo-elements] 97

|6 Assigning property values, Cascading, and Inheritance| 99
|6.1 Specified, computed, and actual values| 99
[6.1.1 Specified values] 99
6.1.2 Computed values100
6.1.3Usedvalues|100

7 Jun 2011 17:58

Cascading Style Sheets Level 2 Revision 1 (CSS 2.1) Specification

[6.1.4 Actual values| .
6.2 Inheritance]
[6.2.1 The 'inherit’ vaIueI
[6.3 The @import rule|
|6.4 The cascade]
[6.4.1 Cascading order]
[6.4.2 limportant rules) .
|6.4.3 Calculating a selector’s specificity| .
[6.4.4 Precedence of non-CSS presentational hints|
:
[7.1 Introductlon to medla typesl
[7.2 Specifying media-dependent style sheetsl
[7.2.1 The @media rule| .
[7.3 Recognized media types|
[7.3.1 Media groups] .
8 Box model
[8.1 Box dimensions| . .
[8.2 Example of margins, padding, and bordersl

[margin-left’, and ‘'margin]
[8.3.1 Collapsing margins|

[8.3 Margin properties: 'margin-top’, ‘'margin-right’, ‘'margin-bottom’}|

:’padding left’, and 'padding] .
[8.5 Border properties|

8.4 Padding properties: 'padding-top’, ‘padding-right’, ‘paddin

[8.5.1 Border width: 'border- top W|dth’ ’border rlght W|dth |

[border-bottom-width’, ’border-left-width’, and ’border-width|

[8.5.2 Border color: 'border-top-color’, ’border-right-color’ |

[border-bottom-color’, ’border-left-color’, and ’border-color]

[8.5.3 Border style: 'border-top-style’, ’border-right-style’
[border-bottom-style’, 'border-left-style’, and 'border-style]

[border-bottom’, 'border-left’, and 'border]

[8.5.4 Border shorthand properties: 'border-top’, 'border-right’,

[8.6 The box model for inline elements in bidirectional contexﬂ

[9 Visual formatting model| .
[9.1 Introduction to the visual formatting modeII
[9.1.1 The viewport|
[9.1.2 Containing blocks| .
[9.2 Controlling box generation| ..
[9.2.1 Block-level elements and block boxesl
[9.2.1.1 Anonymous block boxes|
[9.2.2 Inline-level elements and inline boxes| .
[9.2.2.1 Anonymous inline boxes|
[9.2.3 Run-in boxes| . .
[9.2.4 The 'display’ property| .

7 Jun 2011 17:58

. 100
. 100
. 101
. 102
. 102
. 103
. 104
. 104
. 105
. 107
. 107
. 107
. 108
. 108
. 110
. 111
. 111
. 113

. 115
. 117

. 119
. 120

. 120

. 122

. 123

. 124
. 126
. 127
. 127
. 128
. 128
. 129
. 129
. 129
. 131
. 132
. 132
. 132

Cascading Style Sheets Level 2 Revision 1 (CSS 2.1) Specification

[9.3 Positioning schemes| L .. 134
[9.3.1 Choosing a positioning scheme posmon propertyl .. 134
[9.3.2 Box offsets: 'top’, right’, ’bottom’, 'left] 135

[9.4 Normal flow] . . . N R Y4
[9.4.1 Block formatting contextsl138
[9.4.2 Inline formatting contexts| 138
[9.4.3 Relative positioningf14

. 142
[9.5. 1 Posmonlng the roat the roat propertyl 146
[9.5.2 Controlling flow next to floats: the 'clear’ property] . . . 148

[9.6 Absolute positioningl15
[9.6.1 Fixed positioningf15

[9.7 Relationships between 'display’, 'position’, and 'float] 153

[9.8 Comparison of nhormal flow, floats, and absolute positioning] . . 154
[9.8.1 Normalflony 1585
[9.8.2 Relative positioningf 155
[9.8.3 Floating a box|156
[9.8.4 Absolute positioningg 1859

[9.9 Layered presentation| 163
[9.9.1 Specifying the stack level: the Z- |ndex propertyl . . . 163

[9.10 Text direction: the 'direction’ and 'unicode-bidi’ properties| . . 165

[10 Visual formatting model detailsf 171

|10.1 Definition of "containing block” 171

[10.2 Content width: the 'width’ propertyy] 174

|10.3 Calculating widths and marging|. 175
110.3.1 Inline, non-replaced elements|15
[10.3.2 Inline, replaced elements| . . . 175
[10.3.3 Block-level, non-replaced elements in normal rowI . . 176
|10.3.4 Block-level, replaced elements in normal flow] 176
[10.3.5 Floating, non-replaced elementsf 177
|10.3.6 Floating, replaced elements] Y44
|10.3.7 Absolutely positioned, non-replaced elementsl N A 4
[10.3.8 Absolutely positioned, replaced elements|. 179
[10.3.9 'Inline-block’, non-replaced elements in normal flow] . . 179
[10.3.10 'Inline-block’, replaced elements in normal flon] . . . 179

|10.4 Minimum and maximum widths: 'min-width’ and 'max-width’] . . 179

[10.5 Content height: the 'height’ property| 182

|10.6 Calculating heights and margins| < 7
[10.6.1 Inline, non-replaced elements| o 184

[10.6.2 Inline replaced elements, block-level replaced eIements |n|
[normal flow, 'inline-block’ replaced elements in normal flow and floating|
[replaced elements|] 185
[10.6.3 Block-level non-replaced elements in normal flow when 'over

7 Jun 2011 17:58

Cascading Style Sheets Level 2 Revision 1 (CSS 2.1) Specification

[flow’ computes to 'visible] 185
|10.6.4 Absolutely positioned, non-replaced elementsl . . . 186
[10.6.5 Absolutely positioned, replaced elements|. 187
[10.6.6 Complicated cases| 187
|10.6.7 'Auto’ heights for block formattlng context rootsl .. . 187
[10.7 Minimum and maximum heights: 'min-height’ and 'max-height] . 188
[10.8 Tine height calculations: the ‘line-height’ and 'vertical-align’ propertié§9
|10.8.1 Leading and half-leadingf 190
[11 Visual effects| . . K¢ 1<)
[11.1 Overflow and clrpplngl L19
[11.1.1 Overflow: the 'overflow’ propertyl19
[11.1.2 Clipping: the 'clip’ propertyy 198
[11.2 Visibility: the 'visibility’ propertyy 201
|12 Generated content, automatic numbering, and lists| 203
[12.1 The :before and :after pseudo-elements| 203
[12.2 The 'content’ propertyl 205
[12.3 Quotation marks] 207
[12.3.1 Specifying quotes with the quotes propertyl2a7
|12.3.2 Inserting quotes with the 'content’ propertyy 209
|12.4 Automatic counters and numberingf 210
[12.4.1 Nested countersand scope] 212
[12.4.2 Counter styles|] 214
|12 4.3 Counters in elements with dlsplay nonel 214
. -
‘12 5 1 Lists: the Ilst st Iet e’, 'list-style-image’, 'list-style-position’,
[and Tist-style’ propertiey 215
|13 Paged medial 223
[13.1 Introduction to paged med|a|223
[13.2 Page boxes: the @pagerule| 224
[13.2.1 Page marginsg] 224
[13.2.2 Page selectors: selecting left, rlqht and flrst paqesl .. 226
|13.2.3 Content outside the page box| 227
[13.3 Page breaks] 227
[13.3.1 Page break properties: 'page- break before’ ‘page-break-after’,

[page-break-inside] X

[13.3.2 Breaks inside elements: orphans’ ’wrdowsl 229

[13.3.3 Allowed page breaks| 229

[13.3.4 Forced page breaks| 230

[13.3.5 "Best" page breaks] 230

|13.4 Cascading in the pagecontex{ 231

[14 Colors and Backgrounds|233
[14.1 Foreground color: the ’'color’ propertyl233
[14.2 The backgroundg 233

7 Jun 2011 17:58 9

Cascading Style Sheets Level 2 Revision 1 (CSS 2.1) Specification

[14.2.1 Background properties: 'background-color’, ‘background-image’,
[background-repeat’, lbackground-attachment’, ’background-position’,

‘quound’l S .23
. - X |
[15. 1 Introductlonl . S~
[15.2 Font matching algorrthml . 27 |
[15.3 Font family: the 'font-family’ propertyl L. ... 242
|15.3.1 Generic font families| 244
244
[15.3.1.2sans-serif 245
[15.3.1.3 cursive] 246
[15.3.14fantasy] 246
[15.3.1.5 monospace] 246
|15.4 Font styling: the 'font-style’ propertyl 247
[15.5 Small-caps: the 'font-variant’ propertyy 247
|15.6 Font boldness: the 'font-weight’ property| 248
[15.7 Font size: the 'font-size’ propertyl 251
[15.8 Shorthand font property: the 'font’ property] 253
.25
[16.1 Indentatlon the text mdent propertyl 257
[16.2 Alignment: the 'text-align’ propertyl 258
|16.3 Decoration|.25
[16.3.1 Underlining, overlining, striking, and blinking: the 'text-decora

ftion” propert e .. . 259

|16 4 Letter and word spacing: the ’letter-spacing’ and word -spacing’ prop
. 262
|165 Caprtallzatron the 'text- transform propertyl263
[16.6 White space: the 'white-space’ property]. 264
[16.6.1 The 'white-space’ processing modell 265
116.6.2 Example of bidirectionality with white space collapsmql . 266
|16 6.3 Control and combining characters’ details| 267
. ey 618
[17.1 Introductlon to tablesl 269
[17.2 The CSStablemodel|271
[17.2.1 Anonymous table objects| e A<
.. O
|17 4 Tables in the visual formattmg modeII 216
[17.4.1 Caption position and alignmentf 277
[17.5 Visual layout of table contentsl 278
|17.5.1 Table layers and transparency] 279
|17.5.2 Table width algorithms: the ’table-layout’ propertyl .. . 282
[17.5.2.1 Fixed tablelayout 283
[17.5.2.2 Automatic tablelayoud 284
[17.5.3 Table height algorithms| 285

7 Jun 2011 17:58

Cascading Style Sheets Level 2 Revision 1 (CSS 2.1) Specification

[17.5.4 Horizontal alignment in a column| .
[17.5.5 Dynamic row and column effects| .
:
|17 6.1 The separated borders modeII
[17.6.1.1 Borders and Backgrounds around empty ceIIs the|
[empty-cells’ property] .
[17.6.2 The collapsing border model .
[17.6.2.1 Border conflict resolution|
|17.6.3 Border styles|
[18 User interface] .
[18.1 Cursors: the 'cursor’ propertyl
[18.2 System Colors| .
[18.3 User preferences for fonts|
[18.4 Dynamic outlines: the 'outline’ property| .
|18.4.1 Outlines and the focus|
[18.5 Magnification|
[Appendix A. Aural style sheets| .
|A.1 The media types 'aural’ and 'speech’|
[A.2 Introduction to aural style sheets|

|A.2.3 Frequencies|

[A.3 Volume properties: 'volume’| .
|A.4 Speaking properties: 'speak] .
|[A.5 Pause properties: 'pause-before’, 'pause- after and pausel
|[A.6 Cue properties: 'cue-before’, 'cue-after’, and 'cue]
|A.7 Mixing properties: 'play-during
[A.8 Spatial properties: 'azimuth’ and 'elevation’| .
[A.9 Voice characteristic properties: 'speech-rate’, 'voice-family’, ’pltch |
[pitch-range’, 'stress’, and 'richness| . .
|[A.10 Speech properties: 'speak-punctuation’ and speak numerall
[A.11 Audio rendering of tables]
[A.11.1 Speaking headers: the speak header propertyl
|[A.12 Sample style sheet for HTML]
[A.13 Emacspeak|
[Appendix B. Bibliography]
[B.1 Normative references|
[B.2 Informative references|
[Appendix C. Changes|
|C.1 Additional property vaIuesI
[C.1.1 Section 4.3.6 Colors|
[C.1.2 Section 9.2.4 The 'display’ propertyl
[C.1.3 Section 12.2 The 'content’ property|

7 Jun 2011 17:58

. 287
. 287
. 288
. 288

. 290
. 291
. 292
. 294
. 297
. 297
. 298
. 300
. 300
. 302
. 303
. 305
. 305
. 306
. 307
. 307
. 307
. 308
. 309
. 310
. 311
. 312

313

. 316
. 319
. 320
. 321
. 323
. 324
. 325
. 325
. 327
. 329
. 343
. 343
. 343
. 343

11

Cascading Style Sheets Level 2 Revision 1 (CSS 2.1) Specification

|IC.1.4 Section 16.6 White space: the 'white-space’ property] . . 343
|IC.1.5 Section 18.1 Cursors: the 'cursor’ property| 343
. 343
[C.2.1 Sectlon 1. l CSS 2. 1 VS CSS 2| 343
[C.2.2 Section 1.2 Reading the specification] 343
[C.2.3 Section 1.3 How the specification is organized|. . . . 343
[C.2.4 Section1.4.2.1Value| 343
|C.2.5 Section 1.4.2.6 Mediagroups| 344
[C.2.6 Section 1.4.2.7 Computed value, 344
[C.2.7 Section 1.4.4 Notes and examples| 344
[C.2.8 Section 1.5 Acknowledgments| R 7 ¥
[C.2.9 Section 3.2 Conformance] 344
[C.2.10 Section 3.3 Error Conditions| 344
|C.2.11 Section 4.1.1 Tokenizationl 344
[C.2.12 Section 4.1.3 Charactersandcase] 345
|C.2.13 Section 4.2 Rules for handling parsing errors| 345
[C.2.14 Section 4.3 Values] 345
[C.2.15 Section 4.3.2Lengths] 345
[C.2.16 Section 4.3.4 URLs and URIsg]345
|C.2.17 Section 4.3.5 Counters| 345
[C.2.18 Section 4.3.6 Colors| 346
[C.2.19 Section 4.3.8 Unsupported VaIuesI 346
[C.2.20 Section 4.4 CSS style sheet representation| . . . 346
[C.2.21 Section 5.8.1 Matching attributes and attribute valuesl . 346
|C.2.22 Section 5.8.3 Class selectors| 346
|C.2.23 Section 5.9 ID selectors| 347
[C.2.24 Section 5.10 Pseudo-elements and pseudo classesl .. 347
|C.2.25 Section 5.11.2 The link pseudo-classes: :link and :visited| . 347
[C.2.26 Section 5.11.4 The language pseudo-class: :lang| .. 347
[C.2.27 Section 5.12.1 The :first-line pseudo-element| ... 347
|C.2.28 Section 5.12.2 The :first-letter pseudo-elementt . . . 347
|C.2.29 Section 6.1 Specified, computed, and actual values| . . 347
[C.2.30 Section 6.4.1 Cascading order] 348
[C.2.31 Section 6.4.3 Calculating a selector’s speC|f|C|tyI . 348
[C.2.32 Section 6.4.4 Precedence of non-CSS presentational h|nts| 348
[C.2.33 Section 7.3 Recognized Media Types| 348
|C.2.34 Section 7.3.1 Media Groups| 348
|C.2.35 Section 8.3 Margin properties|34
|C.2.36 Section 8.3.1 Collapsing margins|349
|C.2.37 Section 8.4 Padding properties] 349
|C.2.38 Section 8.5.2 Bordercoloy 349
[C.2.39 Section 8.5.3 Borderstyle] 349

[C.2.40 Section 8.6 The box model for inline elements in b|d|rect|onaI|

7 Jun 2011 17:58

Cascading Style Sheets Level 2 Revision 1 (CSS 2.1) Specification

.349
IC 2.41 Sectlon 9 1.2 Contalnlnq bIocksI38
[C.2.42 Section 9.2.1.1 Anonymous block boxes|] 350
|C.2.43 Section 9.2.2.1 Anonymous inlineboxes| 350
[C.2.44 Section 9.2.3 Run-inboxes] 380
[C.2.45 Section 9.2.4 The 'display’ property] 350
|IC.2.46 Section 9.3.1 Choosing a positioning scheme| . . . 380
|IC.2.47 Section 9.3.2 Box offsets|380
|C.2.48 Section 9.4.1 Block formatting contextsl32
|C.2.49 Section 9.4.2 Inline formattingcontexty 351
|C.2.50 Section 9.4.3 Relative positioning|3
[C.2.51 Section 9.5 Floats|33
|C.2.52 Section 9.5.1 Positioning the road33
|C.2.53 Section 9.5.2 Controlling flow nextto floats] 352
C.2.54 Section 9.7 Relationships between ’'display’, 'position’, and |
'float]382
IC 2.55 Section 9 9 Layered presentatronl3k
[C.2.56 Section 9.10 Text direction] 3kR2
[C.2.57 Chapter 10 Visual formatting model detarlsl 382
|C.2.58 Section 10.1 Definition of "containing block"| 353
|C.2.59 Section 10.2 Content width] 353
|C.2.60 Section 10.3 Calculating widths and marglnsl . . . 383
[C.2.61 Section 10.3.2 Inline, replaced elements| 353
[C.2.62 Section 10.3.3 Block-level, non-replaced elements in normall

. . . . 353
[C.2.63 Sectlon 10.3. 4 Block Ievel replaced elements in normal flow354
|C.2.64 Section 10.3.5 Floating, non-replaced elements] . . . 354
|C.2.65 Section 10.3.6 Floating, replaced elements] 354

|C.2.66 Section 10.3.7 Absolutely positioned, non-replaced elementsp54
|C.2.67 Section 10.3.8 Absolutely positioned, replaced elements| . 354

[C.2.68 Section 10.4 Minimum and maximum widths 354
[C.2.69 Section 10.5 Content height] 355
|C.2.70 Section 10.6 Calculating heights and marqmsl . . . 355
|C.2.71 Section 10.6.1 Inline, non-replaced elements]. . . . 355

[C.2.72 Section 10.6.2 Inline replaced elements, block-level replaced

[efements in normal flow, "inline-block’ replaced elements in normal flow]

[and floating replaced elements] 385
|C.2.73 Section 10.6.3 Block-level non- replaced eIements in normal|
[flow when ’overflow’ computes to 'visible] . . . 356

[C.2.74 Section 10.6.4 Absolutely positioned, non- replaced eIementSB56
|C.2.75 Section 10.6.5 Absolutely positioned, replaced elements| . 356

|C.2.76 Section 10.7 Minimum and maximum heights| . . . 356
|C.2.77 Section 10.8 Line height calculations]. 356
|C.2.78 Section 10.8.1 Leading and half-leadingf 356

7 Jun 2011 17:58 13

14

Cascading Style Sheets Level 2 Revision 1 (CSS 2.1) Specification

[C.2.79 Section 11.1 Overflow and clippingf 357
|C.2.80 Section 11.1.1 Overflon] 357
[C.2.81 Section 11.1.2 Clipping: the ’clip’ propertyi 357
[C.2.82 Section 11.2 Visibility| . 358
[C.2.83 Chapter 12 Generated content, automatlc numberlng and I|§E8
[C.2.84 Section 12.1 The :before and :after pseudo-elements| . . 358
|C.2.85 Section 12.2 The 'content’ property] . . 358
|IC.2.86 Section 12.3.2 Inserting quotes with the content propertyl 358
|C.2.87 Section 12.4 Automatic counters and numbering] . . . 358
|C.2.88 Section 12.4.1 Nested counters and scopel 359
[C.2.89 Section 125Lists} 389
[C.2.90 Section 1251 Lists] 389
[C.2.91 Chapter 13 Paged media3k
|C.2.92 Section 13.2.2 Page selectors] 359
[C.2.93 Section 13.3.1 Page break properties|13%9
[C.2.94 Section 13.3.3 Allowed page breaks|] 360
[C.2.95 Section 14.2.1 Background properties] 360
[C.2.96 Section 14.3 Gammacorrectionf 360
[C.2.97 Chapter 15 Fonts|360
|IC.2.98 Section 15.2 Font matching alqorlthmI 360
[C.2.99 Section 15.2.2 Fontfamilyy 360
[C.2.100 Section 15.5Small-caps}] 361
[C.2.101 Section 15.6 Font boldness|36
[C.2.102 Section 15.7 Fontsizel 361
|C.2.103 Chapter 16 Texy 361
|C.2.104 Section 16.2 Alignment] . . 361
|C.2.105 Section 16.3.1 Underlining, over I|n|ng strlklng and bI|nk|ng361
|C.2.106 Section 16.4 Letter and word spacingf 362
[C.2.107 Section 16.5 Capitalizationl 362
[C.2.108 Section 16.6 Whitespacef] 362
|C.2.109 Chapter 17 Tables| 362
|C.2.110 Section 17.2 The CSS table modeII 362
[C.2.111 Section 17.2.1 Anonymous table objects|362
|[C.2.112 Section 17.4 Tables in the visual formatting model] . . 363
|C.2.113 Section 17.4.1 Caption position and alignmentf . . . 363
[C.2.114 Section 17.5 Visual layout of table contents] 363
|C.2.115 Section 17.5.1 Table layers and transparency] . . . 363
|C.2.116 Section 17.5.2.1 Fixed table layoutf 363
[C.2.117 Section 17.5.2.2 Automatic table layoutf 363
|C.2.118 Section 17.5.3 Table height algorithms] 364
[C.2.119 Section 17.5.4 Horizontal alignment in a column| . . 364
[C.2.120 Section 17.6 Borders| 364
|C.2.121 Section 17.6.1 The separated borders modeII . . . 364

7 Jun 2011 17:58

Cascading Style Sheets Level 2 Revision 1 (CSS 2.1) Specification

|IC.2.122 Section 17.6.1.1 Borders and Backgrounds around empty cgd4|

|C.2.123 Section 17.6.2 The collapsing border modell. . . . 364
|C.2.124 Section 17.6.2.1 Border conflict resolutionf] 365
|C.2.125 Section 18.1 Cursors: the 'cursor’ propertyl 365
[C.2.126 Section 18.4 Dynamic outlines] . . . 365
[C.2.127 Chapter 12 Generated content, automatlc numbermq and 134§
[C.2.128 Appendix A. Aural stylesheets| 365
|C.2.129 Appendix A Section 5 Pause properties] 365
[C.2.130 Appendix A Section 6 Cue properties] 365
[C.2.131 Appendix A Section 7 Mixing properties] 365
|C.2.132 Appendix B Bibliography 366
..366
.366
IC.3. 1 Shorthand propertlesl 366
[C.3.2 Applies to| 366
|C.3.3 Section 4.1.1 (and GZ)I 367
|C.3.4 Section 4.1.3 Characters and case] 367
[C.3.5 Section 4.3 (Double sign problem))| 367
[C.3.6 Section 4.3.2 Lengths| 367
|IC.3.7 Section 4.3.3 Percentages| 367
|C.3.8 Section 4.3.4 URLsandURIS| 367
[C.3.9 Section 4.3.5Counters}, 368
[C.3.10 Section4.3.6 Colors| 368
[C.3.11 Section 4.3.7 Strings| L . . 368
|C.3.12 Section 5.10 Pseudo-elements and pseudo classesl . . 368
|IC.3.13 Section 6.4 The cascade]| 368
[C.3.14 Section 8.1 Box Dimensions| 368
[C.3.15 Section 8.2 Example of margins, padding, and bordersl . 368
|C.3.16 Section 8.5.4 Border shorthand properties] 368
[C.3.17 Section 9.2.1 Block-level elements and block boxes| . . 369
|IC.3.18 Section 9.3.1 Choosing a positioning scheme| .. . 3689
|IC.3.19 Section 9.3.2 Box offsets| 369
[C.3.20 Section 9.4.1 Block formatting contextsl3869
[C.3.21 Section 9.4.2 Inline formatting contextf 369
|C.3.22 Section 9.4.3 Relative positioning| 369
[C.3.23 Section 9.5 Floats|] 369
|C.3.24 Section 9.5.1 Positioning the fload37
|C.3.25 Section 9.5.2 Controlling flow nexttofloats}] 370
[C.3.26 Section 9.6 Absolute positioning| 370
[C.3.27 Section 9.7 Relationships between 'display’, ’posmon andI
'float]370
|C.3.28 Section 9.10 Text dlrectlonl 370
[C.3.29 Section 10.1 Definition of "containing block"l 370

7 Jun 2011 17:58 15

16

Cascading Style Sheets Level 2 Revision 1 (CSS 2.1) Specification

[C.3.30 Section 10.3.3 Block-level, non-replaced elements in normal |

T Y40
|IC.3.31 Section 10.4 Minimum and maximum widths| 371
[C.3.32 Section 10.6.3 Block-level non-replaced elements in normall
flow when "overflow” computes to 'visible]31
|C.3.33 Section 10.7 Minimum and maximum helghtsl . . .37
[C.3.34 Section 11.1.1 Overflon]31
|C.3.35 Section 11.1.2 Clipping: the 'clip’ propertyl31
|IC.3.36 Section 11.2 Visibility| e 4
|C.3.37 Section 12.4.2 Counter styles|31
|C.3.38 Section 12.6.2 Lists| 372
|C.3.39 Section 14.2 The backgroundf 372
[C.3.40 Section 14.2.1 Background properties] 372
|C.3.41 Section 15.2 Font matching algorithm| 372
|C.3.42 Section 15.7 Fontsize} 372
|C.3.43 Section 16.1 Indentation| 373
[C.3.44 Section 16.2 Alignment] 313
[C.3.45 Section 17.2 The CSS table modeII 313
|C.3.46 Section 17.2.1 Anonymous table objects|. 373
|C.3.47 Section 17.4 Tables in the visual formatting modell . . 373
|C.3.48 Section 17.5 Visual layout of table contents] 373
|IC.3.49 Section 17.5.1 Table layers and transparency| . . . 374
|C.3.50 Section 17.6.1 The separated borders model] 374
|C.3.51 Section 18.2 System Colors] 374
|C.3.52 Section E.2 Paintingordey 374
|C.4 Clarifications| 374
|IC.4.1 Section 2.1 A brief CSS 2. 1 tutorlal for HTML| 374
|C.4.2 Section 2.2 A brief CSS 2.1 tutorial for XML| 375
|C.4.3 Section 2.3 The CSS 2.1 processingmodell 375
[C.4.4 Section 3.1 Definitions|35
[C.45Section4.1Syntayy375
|C.4.6 Section 4.1.1 Tokenization|35
|IC.4.7 Section 4.1.3 Characters and case] .. . 376
|IC.4.8 Section 4.1.7 Rule sets, declaration blocks, and selectorsl . 376
[C.4.9 Section 4.2 Rules for handling parsing errors| 376
|C.4.10 Section 4.3.1 Integers and real numbers| 376
[C.4.11 Section 4.3.2Lengthsf 376
[C.4.12 Section 4.3.4 URLs and URIsg|36
[C.4.13 Section 5.1 Pattern matching|36
|C.4.14 Section 5.7 Adjacent sibling selectors] .. . 376
[C.4.15 Section 5.8.1 Matching attributes and attribute valuesl . 377
|C.4.16 Section 5.8.2 Default attribute values in DTDS| ... 377
[C.4.17 Section 5.9 ID selectors| 377

7 Jun 2011 17:58

Cascading Style Sheets Level 2 Revision 1 (CSS 2.1) Specification

C.4.18 Section 5.11.3 The dynamic pseudo-classes: :hover, :active|

and :focus| 317
IC 4.19 Section 5.11. 4 The Ianquaqe pseudo class lang| .. 377
|C.4.20 Section 5.12.2 The :first-letter pseudo-elementt . . . 377
|C.4.21 Section 6.2 Inheritancel 377
[C.4.22 Section 6.2.1 The 'inhert'value 377
|C.4.23 Section 6.3 The @import rule) - Y A 4
|C.4.24 Section 6.4 The Cascade]38
|C.4.25 Section 6.4.1 Cascading order] 378
|C.4.26 Section 6.4.3 Calculating a selector’s speC|f|C|tyI . . . 378
|C.4.27 Section 7.2.1 The @mediarule) 378
|C.4.28 Section 7.3 Recognized mediatypes|. 378
[C.4.29 Section 7.3.1 Mediagroups] 378
|C.4.30 Section 8.1 Box dimensions| 378
|C.4.31 Section 8.3 Margin properties|31
[C.4.32 Section 8.3.1 Collapsing margins|379
|C.4.33 Section 8.5.3 Borderstyle] 379
[C.4.34 Section 9.1.1 Theviewporty 379
[C.4.35 Section 9.2.4 The 'display’ property] 379
|IC.4.36 Section 9.3.1 Choosing a positioning scheme| .. . 379
|IC.4.37 Section 9.3.2 Box offsets| 379
|C.4.38 Section 9.4.2 Inline formatting contexﬂ38
|C.4.39 Section 9.4.3 Relative positioning|38
[C.4.40 Section 9.5 Floats]380
[C.4.41 Section 9.5.1 Positioning the fload380
[C.4.42 Section 9.5.2 Controlling flow nextto floats}] 381
C.4.43 Section 9.8 Comparison of hormal flow, floats, and absolute |
[positioning] 381
|C.4.44 Section 10.1 Deflnltlon of "contalnlng bIock"I38
[C.4.45 Section 10.2 Content width| 381
|C.4.46 Section 10.3.3 Block-level, non-replaced elements in normall
. 51!
[C.4.47 Section 10.3.8 Absolutely positioning, replaced elements| . 381
|IC.4.48 Section 10.4 Minimum and maximum widths| 381
|IC.4.49 Section 10.6 Calculating heights and margins| .. .33
[C.4.50 Section 10.7 Minimum and maximum heights| .. .33
|C.4.51 Section 10.8 Line height calculations| 382
|C.4.52 Section 10.8.1 Leading and half-leadingf 382
|C.4.53 Section 11.1 Overflow and clippingg 382
|C.4.54 Section 11.1.1 Overflony 382
|C.4.55 Section 11.1.2 Clipping, 382
[C.4.56 Section 11.2 Visibility| e . 382
|C.4.57 Section 12.1 The :before and :after pseudo eIementsI . 382

7 Jun 2011 17:58 17

18

Cascading Style Sheets Level 2 Revision 1 (CSS 2.1) Specification

|C.4.58 Section 12.2 The 'content’ property|

383

|IC.4.59 Section 12.3.2 Inserting quotes with the content propertyl 383

[C.4.60 Section 12.4 Automatic counters and numbering| .

. 383

|C.4.61 Section 12.4.3 Counters in elements with 'display: none| . 383

[C.4.62 Section 14.2 The background|
[C.4.63 Section 15.1 Fonts Introduction|
|C.4.64 Section 15.2 Font matching algorithm|
|C.4.65 Section 15.2.2 Font family|

|C.4.66 Section 15.3.1 Generic font families|
|C.4.67 Section 15.4 Font styling|

|C.4.68 Section 15.5 Small-caps] .

[C.4.69 Section 15.6 Font boldness|

|C.4.70 Section 15.7 Font size]

|C.4.71 Section 16.1 Indentation| .

[C.4.72 Section 16.2 Alignment|

. 383
. 384
. 384
. 384
. 384
. 384
. 384
. 385
. 385
. 385

385

[C.4.73 Section 16.3.1 Underlining, over Ilnlng strlklng and bllnklng|385

[C.4.74 Section 16.5 Capitalization|

[C.4.75 Section 16.6 White space]

[C.4.76 Section 17.1 Introduction to tables|

|C.4.77 Section 17.2 The CSS table model|

[C.4.78 Section 17.2.1 Anonymous table objects| .
|C.4.79 Section 17.4 Tables in the visual formatting model|
[C.4.80 Section 17.5 Visual layout of table contents|
[C.4.81 Section 17.5.1 Table layers and transparency]
[C.4.82 Section 17.5.2 Table width algorithms|

|IC.4.83 Section 17.5.2.1 Fixed table layout|

[C.4.84 Section 17.5.2.2 Automatic table layout|

[C.4.85 Section 17.5.4 Horizontal alignment in a column|
|C.4.86 Section 17.5.5 Dynamic row and column effects|
[C.4.87 Section 17.6.1 The separated borders model .
|C.4.88 Section 17.6.2 The collapsing borders model| .
|C.4.89 Section 18.2 System Colors| .

[C.4.90 Section 18.4 Dynamic outlines|

[C.4.91 Section 18.4.1 Outlines and the focus|

|C.4.92 Appendix D Default style sheet for HTML 4

|C.5 Errata since the Candidate Recommendation of July 2007|

|IC.5.1 Section 1.4.2.1 Value| .

|C.5.2 Section 2.3 The CSS 2.1 processing modeII
|C.5.3 Section 3.1 Definitions|

[C.5.4 Section 4.1.1 Tokenization| .
|C.5.5 Section 4.1.2.2 Informative Historical Notesl
[C.5.6 Section 4.1.3 Characters and case]

|C.5.7 Section 4.1.3 Characters and case]

. 385
. 385
. 385
. 386
. 386
. 386
. 386
. 386
. 387
. 387
. 387
. 387
. 387
. 387
. 387
. 388
. 388
. 388
. 388
. 388
. 388
. 388
. 388
. 388
. 389
. 389
. 389

7 Jun 2011 17:58

Cascading Style Sheets Level 2 Revision 1 (CSS 2.1) Specification

|C.5.8 Section 4.1.3 Characters and case]38
|IC.5.9 Section 4.1.3 Characters and case] 389
[C.5.10 Section 4.1.5 At-rules] 390
[C.5.11 Section 4.1.7 Rule sets, declaration blocks and selectorsl 390
[C.5.12 Section 4.2 Rules for handling parsing errors| 390
|C.5.13 Section 4.2 Rules for handling parsing errors| 390
|C.5.14 Section 4.3.2Lengths] 390
|C.5.15 Section 4.3.5 Counters| . . . 391
|C.5.16 Section 5.8.1 Matching attributes and attrlbute valuesl . 391
|C.5.17 Section 5.8.2 Default attribute values in DTDS| .. . 331
[C.5.18 Section 5.11.4 The language pseudo-class: :lang| .. 391
[C.5.19 Section 5.12.3 The :before and :after pseudo-elements| . 391
|C.5.20 Section 6.3 The @import rule) - 1 K
|C.5.21 Section 6.3 The @import rule) - e K
|C.5.22 Section 6.4.1 Cascadingorderq 392
|C.5.23 Section 6.4.1 Cascadingorderq 392
[C.5.24 Section 7.2.1 The @mediarule) 392
[C.5.25 Section 8.3.1 Collapsing margins| N 1 4
|C.5.26 Section 8.3.1 Collapsing margins) 393
|C.5.27 Section 8.3.1 Collapsing margins) 393
[C.5.28 Section 9.2.2 Inline-level elements and inline boxesl .. 393
|C.5.29 Section 9.2.4 The ’display’ property] 393
[C.5.30 Section 9.3.2 Box offsets: 'top’, 'right’, ’bottom’ ’Ieftl .. 393
[C.5.31 Section9.5Flpatsf 393
|C.5.32 Section 9.5 Floats|] . . 394
|C.5.33 Section 9.5.2 Controlling flow next to floats the clear propeﬂﬂ4
[C.5.34 Section 9.6.1 Fixed positioning] 3%
|C.5.35 Section 9.9.1 Specifying the stack level: the 'z- |ndex propertg94
|C.5.36 Section 10.1 Definition of "containing block"l 394
|C.5.37 Section 10.3 Calculating widths and margins| 395
|C.5.38 Section 10.3.1 Inline, non-replaced elements| 395
|C.5.39 Section 10.3.2 Inline, replaced elements| 395
|C.5.40 Section 10.3.2 Inline, replaced elements] 395
[C.5.41 Section 10.3.3 Block-level, non-replaced elements in normal |

. . . . 395

[C.5.42 Section 10.3. 7 Absolutely posmoned non- replaced elementspa6
[C.5.43 Section 10.3.7 Absolutely positioned, non-replaced elementsB96
|C.5.44 Section 10.3.8 Absolutely positioned, replaced elements| . 397
|C.5.45 Section 10.3.8 Absolutely positioned, replaced elements| . 397
|C.5.46 Section 10.3.8 Absolutely positioned, replaced elements| . 397
|C.5.47 Section 10.5 Content height: the 'height’ property| .. 397
|C.5.48 Section 10.6.2 Inline replaced elements [[]]] 397
[C.5.49 Section 10.6.4 Absolutely positioned, non-replaced elementsB97

7 Jun 2011 17:58 19

20

Cascading Style Sheets Level 2 Revision 1 (CSS 2.1) Specification

|C.5.50 Section 10.6.5 Absolutely positioned, replaced elements| . 398

|C.5.51 Section 10.8.1 Leading and half-leadingl 398
|C.5.52 Section 11.1.1 Overflow: the 'overflow’ property] . . . 398
|C.5.53 Section 11.1.2 Clipping: the 'clip’ property| 398
|C.5.54 Section 12.2 The 'content’ propertyy] 398
[C.5.55 Section 12.4.2 Counterstyles] 399
|C.5.56 Section 12.5 Lists|39
[C.5.57 Section 12.5.1 Lists: the ’list- st le- t e’, 'list-style-image’,
[list-style-position’, and Tlist-style’ properties] 399
[C.5.58 Section 12.5.1 Lists: the ’list-style-type’, ’list-style-image’,
[list-style-position’, and 'list-style’ properties] . . 399
|C.5.59 Section 12.5.1 Lists: the ’list-style-type’, ’list- style -image’, |
[list-style-position’, and 'list-style’ properties| 399
[C.5.60 Section 13.2 Page boxes: the @page rule] . . 4Q0
IC 5.61 Section 13.2.1.1 Rendering page boxes that do not f|t a tarqetl
e .. . 400
IC 5.62 Section 13.2.3 Content outS|de the page boxl .. . 400
C.5.63 Section 13.3.1 Page break properties: 'page-break-before’)
‘page-break-after’, 'page-break-inside’] 400
C.5.64 Section 13.3.1 Page break properties: 'page-break-before’
'page-break-after’, 'page-break-inside’ 4Q0

|C.5.65 Section 13.3.2 Breaks inside eIements orphans’ ’W|dows| 400
|C.5.66 Section 13.3.2 Breaks inside elements: 'orphans’, 'widows’| 401

[C.5.67 Section 13.3.3 Allowed page breaks| 401
|C.5.68 Section 13.3.3 Allowed page breaks] 401
|C.5.69 Section 13.3.3 Allowed page breaks| 401
|C.5.70 Section 13.3.5 "Best" page breaks] 401
|C.5.71 Section 14.2 The backgroundf] 401
[C.5.72 Section 14.2 The background| L. 402

|C.5.73 Section 14.2.1 Background properties: bacquound color |
[background-image’, 'background-repeat’, ’background-attachment’, |

[background-position’, and 'background] 402
|C.5.74 Section 15.6 Font boldness: the 'font-weight’ propertyl . 402
|C.5.75 Section 16.6 Whitespace: the 'white-space’ property] . . 403
|C.5.76 Section 16.6.1 The 'white-space’ processing modell . . 403
|C.5.77 Section 17.2.1 Anonymous table objects] 403
|C.5.78 Section 17.2.1 Anonymous table objectsf 403
|C.5.79 Section 17.4 Tables in the visual formatting model| .. 403
|C.5.80 Section 17.5.4 Horizontal alignmentinacolumn] . . . 404
|C.5.81 Section 18.1 Cursors: the ’cursor’ property] 404
|C.5.82 Section B.2 Informative references| 404
|C.5.83 Appendix D. Default style sheet for HTML 4] 404
[C.5.84 Appendix D. Default style sheetfor HTML 4 404
|C.5.85 Section E.2 Paintingordery 404

7 Jun 2011 17:58

Cascading Style Sheets Level 2 Revision 1 (CSS 2.1) Specification

|IC.5.86 Appendix G. Grammar of CSS 2.1}
|C.5.87 Section G.1 Grammaui] .
[C.5.88 Section G.2 Lexical scanner| .
[C.5.89 Section G.2 Lexical scanner| .
[C.5.90 Section G.2 Lexical scanner| .
[C.5.91 Section G.2 Lexical scanner] .
|C.5.92 Appendix I. Index|

|IC.6 Errata since the Candidate Recommendatlon of Apr|l 2009|
[C.6.1 Section 4.2 Rules for handling parsing errors|
|C.6.2 Section 13.3.3 Allowed page breaks| .
|C.6.3 Section 15.3 Font family: the 'font-family’ property| .
[C.6.4 Section 15.3.1.1 serif| .
|C.6.5 Section 15.7 Font size: the font -size’ propertyl
|C.6.6 Section 17.5.2.1 Fixed table layout
|C.6.7 Section 17.5.3 Table height layout|
|C.6.8 Appendix G. Grammar of CSS 2.1| .

[C.7 Errata since the Candidate Recommendation of September 2009|
|C.7.1 Section 1.4.2.1 Value| .
|C.7.2 Section 3.1 Definitions)
|C.7.3 Section 4.1.1 Tokenization|
[C.7.4 Section 4.1.1 Tokenization|
[C.7.5 Section 4.1.1 Tokenization|
|C.7.6 Section 4.1.1 Tokenization| .
|C.7.7 Section 4.1.2.2 Informative Historical Notesl
|C.7.8 Section 4.1.3 Characters and case]
|IC.7.9 Section 4.1.3 Characters and case]
[C.7.10 Section 4.1.8 Declarations and properties|
[C.7.11 Section 4.2 Rules for handling parsing errors| .
[C.7.12 Section 4.3.2 Lengths|
|C.7.13 Section 4.3.2 Lengths|
|C.7.14 Section 4.3.4 URLs and URIS|
|C.7.15 Section 4.3.4 URLs and URIS|
|C.7.16 Section 5.8.2 Default attribute values in DTDsI
|C.7.17 Section 5.11.4 The language pseudo-class: :lang|
[C.7.18 Section 5.12 Pseudo-elements| .
[C.7.19 Section 5.12.1 The :first-line pseudo- elemenﬂ
|C.7.20 Section 5.12.2 The :first-letter pseudo-element|
|C.7.21 Section 6.2 Inheritance|
|C.7.22 Section 6.4.4 Precedence of non- CSS presentatlonal hlntsl
[C.7.23 Section 7.3 Recognized media types| .
[C.7.24 Section 8.3.1 Collapsing margins|
[C.7.25 Section 8.3.1 Collapsing margins| .
|C.7.26 Section 9.2.1 Block-level elements and block boxesl

7 Jun 2011 17:58

. 404
. 405
. 405
. 405
. 405
. 405
. 406
. 406
. 406
. 406
. 406
. 406
. 406
. 407
. 407

407
407

. 407
. 407
. 408
. 408
. 408
. 408
. 409
. 409
. 409
. 409
. 409
. 409
. 409
. 410
. 410
. 410
. 411
. 411
. 411
. 411

411
411

. 412
. 412
. 412
. 412

21

22

Cascading Style Sheets Level 2 Revision 1 (CSS 2.1) Specification

[C.7.27 Section 9.2.1.1 Anonymous block boxes|] 413
|C.7.28 Section 9.2.1.1 Anonymous block boxes| 413
[C.7.29 Section 9.2.1.1 Anonymous block boxes| 413
|[C.7.30 Section 9.2.1.1 Anonymous block boxes| 413
[C.7.31 Section 9.2.2 Inline-level elements and inline boxes] . . 413
|C.7.32 Section 9.2.3 Run-inboxes| 413
[C.7.33 Section 9.2.4 The 'display’ property] 414
|C.7.34 Section 9.2.4 The 'display’ propertyl 414
|C.7.35 Section 9.3 Positioning schemes|. 415
[C.7.36 Section 9.4 Normal flow] 415
[C.7.37 Section 9.3.2 Box offsets: 'top’, ’nght’ ’bottom’ ’Ieftl . . 415
[C.7.38 Section9.5Flpatsf 416
|C.7.39 Section 9.5 Floats|] . . 416

|C.7.40 Section 9.5.2 Controlling flow next to floats the clear propelzt\lﬂ
|C.7.41 Section 9.5.2 Controlling flow next to floats: the 'clear’ propea|7
|C.7.42 Section 9.5.2 Controlling flow next to floats: the 'clear’ propea{|7
|C.7.43 Section 9.5.2 Controlling flow next to floats: the 'clear’ prope#y|8
|C.7.44 Section 14.2.1 Background properties] 418
|C.7.45 Section 9.9.1 Specifying the stack level: the 'z-index’ propert{18

C.7.46 Section 9.10 Text direction: the 'direction’ and 'unicode-bidi’ |

properties| . . 418
C.7.47 Section 9.10 Text dlrectlon the d|rect|on and unlcode b|d| |

[properties| . . 419
|C.7.48 Sectlon 9.10 Text d|rect|on the ’d|rect|on and unlcode b|d| |

. 419
[C.7.49 Sectlon 10.1 Def|n|t|on of "contalnlng block"l 419
[C.7.50 Section 10.2 Content width: the 'width’ property] . . . 420
|C.7.51 Section 10.2 Content width: the 'width’ propertyy . . . 420
|C.7.52 Section 10.2 Content width: the 'width’ propertyy . . . 420
|C.7.53 Section 10.5 Content height: the 'height’ property| .. 420
|C.7.54 Section 10.5 Content height: the 'height’ property| .. 420

|C.7.55 Section 10.6.7 'Auto’ heights for block formatting context root?1
IC 7.56 Section 10.7 Minimum and maximum heights: 'min-height’ and |

. ... 421
C.7.57 Sectlon 10.8 Llne helqht calculatlons the I|ne helqht and 'verti{
cal-align’ properties| 421
[C.7.58 Section 10.8 Line height caIcuIatlons the I|ne he| ht" and 'verti-
[cal-align’ properties] L 422
|C.7.59 Section 10.8.1 Leadlng and haIf Ieadlngl 422
|C.7.60 Section 10.8.1 Leading and half-leadingf 423
|C.7.61 Section 10.8.1 Leading and half-leadingl 423
[C.7.62 Section 11.1 Overflow and clippingg 423
|C.7.63 Section 11.1.1 Overflow: the 'overflow’ property] . . . 423
|C.7.64 Section 11.1.1 Overflow: the 'overflow’ property] . . . 424

7 Jun 2011 17:58

Cascading Style Sheets Level 2 Revision 1 (CSS 2.1) Specification

|C.7.65 Section 11.1.1 Overflow: the 'overflow’ property] . . . 424
|C.7.66 Section 11.1.2 Clipping: the ’clip’ property| 424
[C.7.67 Section 12.5 Lists] . . 424
|C.7.68 Section 12.5.1 Lists: the list- style type’ ’Ilst style -image’, |
[list-style-position’, and 'list-style’ properties| . . 425
[C.7.69 Section 12.5.1 Lists: the ’list-style-type’, ’list- style -image’, |
[list-style-position’, and ’list-style’ properties| . . 425
[C.7.70 Section 12.5.1 Lists: the 'list-style-type’, 'list- style -image’, |
[list-style-position’, and ’list-style’ properties] 425
[C.7.71 Section 12.5.1 Lists: the ’list-style-type’, "list-style-image’,
[list-style-position’, and "list-style” properties] 425
[C.7.72 Section 12.5.1 Lists: the ’list-style-type’, 'list-style-image’,
[Tist-style-position’, and 'list-style’ properties] 425
[C.7.73 Section 13.2 Page boxes: the @page rulg] . . 426
[C.7.74 Section 13.2.2 Page selectors: selecting left, right, and flrstl
L 426
|C.7.75 Section 13.3.2 Breaks |nS|de elements orphans’ ’W|dows| 426
[C.7.76 Section 13.3.3 Allowed page breaks| 427
|C.7.77 Section 15.3 Font family: the 'font-family’ propertyl .. 427
|C.7.78 Section 15.3.1 Generic font families| . . . 427
|C.7.79 Section 15.6 Font boldness: the 'font-weight’ propertyl . 428
|C.7.80 Section 15.6 Font boldness: the 'font-weight’ property] . 428
|C.7.81 Section 15.7 Font size: the 'font-size’ property| .. . 428
[C.7.82 Section 16.1 Indentation: the 'text-indent’ propertyy . . 429
|C.7.83 Section 16.1 Indentation: the 'text-indent’ property| .. 429
|C.7.84 Section 16.2 Alignment: the 'text-align’ property] . . . 429
|C.7.85 Section 16.2 Alignment: the 'text-align’ property] . . 429
[C.7.86 Section 16.3.1 Underlining, overlining, striking, and bllnklng the |
[text-decoration’ property] . . 430
|C.7.87 Section 16.3.1 Underlining, overI|n|ng stnklng and bllnklng the |
[text-decoration’ property] . . 430
[C.7.88 Section 16.4 Letter and word spacing: the Ietter -spacing’ andI
[word-spacing’ properties] . . . 431
|C.7.89 Section 16.6 White space: the Whlte -space’ propertyl . 431
|C.7.90 Section 16.6.1 The 'white-space’ processing modell . . 432
|C.7.91 Section 16.6.1 The 'white-space’ processing modell . . 432
|C.7.92 Section 16.6.1 The 'white-space’ processing modell . . 432
[C.7.93 Section 17.2 The CSS tablemodel] 432
[C.7.94 Section 17.2.1 Anonymous table objects] 432
[C.7.95 Section 17.2.1 Anonymous table objects] 432
|C.7.96 Section 17.4 Tables in the visual formatting modell . . 432
|C.7.97 Section 17.4 Tables in the visual formatting modell . . 433
|C.7.98 Section 17.5.2.2 Automatic tablelayou 433
[C.7.99 Section 17.5.3 Table height algorithms|] 434

7 Jun 2011 17:58 23

24

Cascading Style Sheets Level 2 Revision 1 (CSS 2.1) Specification

[C.7.100 Section 17.5.4 Horizontal alignment in a column| .. 434
|C.7.101 Section B.2 Informative references| 434
[C.7.102 Section D. Default style sheet for HTML 4 434
|C.7.103 Section E.2 Paintingordey 435
[C.7.104 Appendix G Grammarof CSS 2.1 435
|C.8 Changes since the working draft of 7 December 2010] .. . 435
[C.8.1 8.3.1 Collapsing margins] 435
|C.8.2 10.8.1 Leading and half-leadingf 435
[C.8.3 10.3 Calculating widths and margins] 435
[C.8.4 14.3 Gamma correction 435
[C.8.511.1.2 Clipping: the 'clip’ propertyy 436
[C.8.6 9.4.2 Inline formatting contexts| 436
[C.8.7 10.3.2 Inline, replaced elements] 436
|IC.8.8 10.1 Definition of "containing block'| . . . 436
[C.8.9 13.2.2 Page selectors: selecting left, right, and first pagesl 437
[C.8.10 8.3.1 Collapsing margins| . 437
[C.8.11 10 8 Line height calculations: the 'line- helght and vertlcal allgn |
. 437
|[C.8.12 10 8.1 Leadlnq and haIf-Ieadlnql 438
[C.8.13 10.6.1 Inline, non-replaced elements| 438
|IC.8.14 9.5.1 Positioning the float: the 'float’ propertyl 438
[C.8.159.2.1.1 Anonymous block boxes| 438
[C.8.16 5.12.1 The :first-line pseudo-element| 439
[C.8.17 16.6 White space: the 'white-space’ property] . . . 439
[C.8.18 12.5.1 Lists: the 'list-style-type’, 'list-style-image’, ’list- style posi
[tion’, and ’list-style’ properties| . . L 439
|C.8.19 9.7 Relationships between dlsplay’ ’posmon and float’] .
|IC.8.20 9.4.2 Inline formatting contexts| 440
[C.8.21 4.1.9 Comments| . . 440
[C.8.22 12.5.1 Lists: the 'list-style- type’ ’Ilst style |mage’ ’Ilst style posi-
ftion’, and ’list-style’ properties] 440
[C.8.23 9.5.1 Positioning the float: the ’float propertyl .. 44
[C.8.24 9.3 Positioning schemes| . . . - Y |

[C.8.25 9.10 Text direction: the 'direction’ and unlcode bidi’ propertiegtl
[C.8.26 16.3.1 Underlining, overlining, striking, and blinking: the

[text-decoration’ property] 442
[C.8.27 16.3.1 Underlining, overlining, striking, and blinking: the
[text-decoration’ property] . . . 442
IC 8.28 10 4 Minimum and maximum W|dths 'min- W|dth’ andI

o 442
[C.8.299.3.2 Box offsets top’ ’rlght’ ’bottom’ ’Ieftl S Vi
[C.8.30 9.2.1.1 Anonymous block boxes| 443
[C.8.31 17.4 Tables in the visual formatting modeII 443
|IC.8.32 11.1.2 Clipping: the 'clip’ property| 443

7 Jun 2011 17:58

Cascading Style Sheets Level 2 Revision 1 (CSS 2.1) Specification

|IC.8.33 13.2 Page boxes: the @page rule|
|IC.8.34 4.1.1 Tokenization|

|C.8.35 4.2 Rules for handling parsing errorsl
[C.8.36 3.1 Definitions|

|IC.8.37 4.3.4 URLs and URIs|
[C.8.38 9.5 Floats]

[C.8.39 11.1.1 Overflow: the overﬂow propertyl
|IC.8.40 9.2.1.1 Anonymous block boxes| .
[C.8.41 16.2 Alignment: the 'text-align’ property]
[C.8.42 9.5 Floats|

|IC.8.43 9.4.2 Inline formattlng contextsl

[C.8.44 5.12 Pseudo-elements|

|C.8.45 9.5 Floats|

|C.8.46 9.5 Floats|

[ground-position’, and "background]]
[C.8.48 9.2.4 The 'display’ property|

|IC.8.49 6.1.2 Computed values| .
|IC.8.50 10.3.2 Inline, replaced elements| .

[C.8.47 14.2.1 Background properties: 'background-color’, ’back-
e v
. 447
. 450
. 450

. 444
. 445
. 445
. 445
. 445
. 445
. 445
. 446
. 446
. 446
. 446
. 447
. 447
. 447

|IC.8.51 Section 9.5.2 Controlling flow next to floats: the ‘clear’ propedt0

|IC.8.52 G.2 Lexical scanner| .

. 451

|C.8.53 Section 9.5.2 Controlling flow next to floats the ‘clear’ propedil

[C.8.54 9.5 Floats|

. 451

|C.8.55 10.6.3 Block-level non- replaced elements in normal flow when |

[overflow’ computes to 'visible’]
|[Appendix D. Default style sheet for HTML 4
[Appendix E. Elaborate description of Stacking Contexts|
|[E.1 Definitions|
E.2 Painting order]
IAppendlx F. FuII property tablel
[Appendix G. Grammar of CSS 2.1
IG 2 Lexical scanner] .
|G.3 Comparison of tokenlzatlon in CSS 2. 1 and CSSlI
|G.4 Implementation note|
[Appendix I. Index|

. 452
. 453
. 435
. 455
. 455
. 458
. 439
. 467
. 467
. 469
. 471
. 472
. 475

7 Jun 2011 17:58

25

26

Cascading Style Sheets Level 2 Revision 1 (CSS 2.1) Specification

7 Jun 2011 17:58

About the CSS 2.1 Specification

1 About the CSS 2.1 Specification

Contents

1.1 CSS2.1vsCSS?2

[1.2 Reading the specification|

[1.3 How the specification is organized|

1.4 Conventions|
[1.4.1 Document language elements and attributes|
|1.4.2 CSS property definitions|

1.4.2.2 Initial
[1.4.2.3 Applies to|

[1.4.2.4 Inherited|
[1.4.2.5 Percentage values|
|1.4.2.6 Media groups|
[1.4.2.7 Computed value|
|1.4.3 Shorthand properties|
|1.4.4 Notes and examples|
|1.4.5 Images and long descriptions|
[1.5 Acknowledgments|

1.1 CSS 2.1vs CSS 2

27
28
28
29
29
29
29
31
31
31
31
31
32
32
32
33
33

The CSS community has gained significant experience with the CSS2 specification

since it became a recommendation in 1998. Errors in the CSS2 specification have

subsequently been corrected via the publication of various errata, but there has not

yet been an opportunity for the specification to be changed based on experience
gained.

While many of these issues will be addressed by the upcoming CSS3 specifica-
tions, the current state of affairs hinders the implementation and interoperability of
CSS2. The CSS 2.1 specification attempts to address this situation by:

® Maintaining compatibility with those portions of CSS2 that are widely accepted

and implemented.
® |Incorporating all published CSS2 errata.
® Where implementations overwhelmingly differ from the CSS2 specification,

modifying the specification to be in accordance with generally accepted practice.

® Removing CSS2 features which, by virtue of not having been implemented,

have been rejected by the CSS community. CSS 2.1 aims to reflect what CSS

features are reasonably widely implemented for HTML and XML languages in
general (rather than only for a particular XML language, or only for HTML).
® Removing CSS2 features that will be obsoleted by CSS3, thus encouraging

7 Jun 2011 17:58

27

About the CSS 2.1 Specification

adoption of the proposed CSS3 features in their place.
e Adding a (very) small number of [new property values|[p. 343] when implemen-
tation experience has shown that they are needed for implementing CSS2.

Thus, while it is not the case that a CSS2 style sheet is necessarily
forwards-compatible with CSS 2.1, it is the case that a style sheet restricting itself to
CSS 2.1 features is more likely to find a compliant user agent today and to preserve
forwards compatibility in the future. While breaking forward compatibility is not desir-
able, we believe the advantages to the revisions in CSS 2.1 are worthwhile.

CSS 2.1 is derived from and is intended to replace CSS2. Some parts of CSS2
are unchanged in CSS 2.1, some parts have been altered, and some parts removed.
The removed portions may be used in a future CSS3 specification. Future specs
should refer to CSS 2.1 (unless they need features from CSS2 which have been
dropped in CSS 2.1, and then they should only reference CSS2 for those features,
or preferably reference such feature(s) in the respective CSS3 Module that includes
those feature(s)).

1.2 Reading the specification

This section is non-normative.

This specification has been written with two types of readers in mind: CSS authors
and CSS implementors. We hope the specification will provide authors with the tools
they need to write efficient, attractive, and accessible documents, without overexpos-
ing them to CSS’s implementation details. Implementors, however, should find all
they need to build [conforming user agents|[p. 47] . The specification begins with a
general presentation of CSS and becomes more and more technical and specific
towards the end. For quick access to information, a general table of contents,
specific tables of contents at the beginning of each section, and an index provide
easy navigation, in both the electronic and printed versions.

The specification has been written with two modes of presentation in mind: elec-
tronic and printed. Although the two presentations will no doubt be similar, readers
will find some differences. For example, links will not work in the printed version
(obviously), and page numbers will not appear in the electronic version. In case of a
discrepancy, the electronic version is considered the authoritative version of the
document.

1.3 How the specification is organized

This section is non-normative.

The specification is organized into the following sections:

Section 2: An introduction to CSS 2.1
The introduction includes a brief tutorial on CSS 2.1 and a discussion of design
principles behind CSS 2.1.

28 7 Jun 2011 17:58

About the CSS 2.1 Specification

Sections 3 - 18: CSS 2.1 reference manual.

The bulk of the reference manual consists of the CSS 2.1 language reference.

This reference defines what may go into a CSS 2.1 style sheet (syntax, proper-

ties, property values) and how user agents must interpret these style sheets in

order to claim[conformance][p. 47] .

Appendixes:

Appendixes contain information about[aural properties| [p. 305] (non-normative)
[a_sample style sheet for HTML 4] [p. 453] , [changes from CSS2|[p. 329] , [the]
[grammar of CSS 2.1][p. 467] , a list of normative and informative [references|
[p. 325] , and two indexes: one for[properties [p. 459] and one [general index]
[p. 475] .

1.4 Conventions

1.4.1|Document language| elements and attributes

® CSS property and pseudo-class names are delimited by single quotes.

® CSS values are delimited by single quotes.

® Document language attribute names are in lowercase letters and delimited by
double quotes.

1.4.2 CSS property definitions

Each CSS property definition begins with a summary of key information that resem-
bles the following:

'property-name’

Value: legal values & syntax

Initial: initial value

Applies to: elements this property applies to

Inherited: whether the property is inherited
Percentages: how percentage values are interpreted
Media: which media groups the property applies to

Computed value: how to compute the computed value

1.4.2.1 Value

This part specifies the set of valid values for the property whose name is[prop-
A property value can have one or more components. Component value
types are designated in several ways:

1. keyword values (e.g., auto, disc, etc.)

2. basic data types, which appear between "<" and ">" (e.g., <length>, <percent-
age>, etc.). In the electronic version of the document, each instance of a basic
data type links to its definition.

7 Jun 2011 17:58

29

3

About the CSS 2.1 Specification

. types that have the same range of values as a property bearing the same name
(e.g., <’border-width’> <’background-attachment’>, etc.). In this case, the type
name is the property name (complete with quotes) between "<" and ">" (e.g.,
<’border-width’>). Such a type does not include the value 'inherit’. In the elec-
tronic version of the document, each instance of this type of non-terminal links
to the corresponding property definition.

non-terminals that do not share the same name as a property. In this case, the
non-terminal name appears between "<" and ">", as in <border-width>. Notice
the distinction between <border-width> and <’border-width’>; the latter is
defined in terms of the former. The definition of a non-terminal is located near its
first appearance in the specification. In the electronic version of the document,
each instance of this type of value links to the corresponding value definition.

Other words in these definitions are keywords that must appear literally, without
quotes (e.g., red). The slash (/) and the comma (,) must also appear literally.

Component values may be arranged into property values as follows:

Several juxtaposed words mean that all of them must occur, in the given order.
A bar (|) separates two or more alternatives: exactly one of them must occur.

A double bar (||) separates two or more options: one or more of them must
occur, in any order.

A double ampersand (&&) separates two or more components, all of which must
occur, in any order.

Brackets ([]) are for grouping.

Juxtaposition is stronger than the double ampersand, the double ampersand is
stronger than the double bar, and the double bar is stronger than the bar. Thus, the

following lines are equivalent:
ab | c|] d&& ef
[ab][[c|l[d&&[ef]]
Every type, keyword, or bracketed group may be followed by one of the following
modifiers:
® An asterisk (*) indicates that the preceding type, word, or group occurs zero or
more times.
® A plus (+) indicates that the preceding type, word, or group occurs one or more
times.
® A question mark (?) indicates that the preceding type, word, or group is optional.
® A pair of numbers in curly braces ({A,B}) indicates that the preceding type, word,

or group occurs at least A and at most B times.

The following examples illustrate different value types:

30

7 Jun 2011 17:58

About the CSS 2.1 Specification

Value: N | NW | NE
Value: [<length> | thick | thin [{1,4}
Value: [<family-name> , |* <family-name>
Value: <uri>? <color> [/ <color>]?
Value: <uri> || <color>
Value: inset? && [<length>{2,4} && <color>?]

Component values are specified in terms of tokens, as described in
[p. 469] . As the grammar allows spaces between tokens in the components of the
expr production, spaces may appear between tokens in property values.

Note: In many cases, spaces will in fact be required between tokens in order to
distinguish them from each other. For example, the value 'lem2em’ would be parsed
as a single DIMENtoken with the number '1’ and the identifier 'em2em’, which is an
invalid unit. In this case, a space would be required before the "2’ to get this parsed
as the two lengths "1lem’ and '2em’.

1.4.2.2 Initial

This part specifies the property’s initial value. Please consult the section onfthe]
[p. 99] for information about the interaction between style sheet-specified,
inherited, and initial property values.

1.4.2.3 Applies to

This part lists the elements to which the property applies. All elements are consid-
ered to have all properties, but some properties have no rendering effect on some
types of elements. For example, the [clear] property only affects block-level
elements.

1.4.2.4 Inherited

This part indicates whether the value of the property is inherited from an ancestor
element. Please consult the section on [p. 99] for information about the
interaction between style sheet-specified, inherited, and initial property values.
1.4.2.5 Percentage values

This part indicates how percentages should be interpreted, if they occur in the value
of the property. If "N/A" appears here, it means that the property does not accept
percentages in its values.

1.4.2.6 Media groups

This part indicates the [media groups] [p. 110] to which the property applies. Informa-
tion about media groups is non-normative.

7 Jun 2011 17:58 31

About the CSS 2.1 Specification

1.4.2.7 Computed value

This part describes the computed value for the property. See the section on
[computed values|[p. 100] for how this definition is used.

1.4.3 Shorthand properties

Some properties are shorthand properties, meaning that they allow authors to
specify the values of several properties with a single property.

For instance, the [font] property is a shorthand property for setting[font-style],
[font-variant], [font-weight], [font-size’, [Tine-height], and [font-family] all at once.

When values are omitted from a shorthand form, each "missing" property is

assigned its initial value (see the section on[the cascade] [p. 99]).

Example(s):

The multiple style rules of this example:

h1 {
font-weight: bold;
font-size: 12pt;
line-height: 14pt;
font-family: Helvetica;
font-variant: normal;
font-style: normal;

}
may be rewritten with a single shorthand property:

h1 { font: bold 12pt/14pt Helvetica }

In this example, [font-variant’], and[font-style’| take their initial values.

1.4.4 Notes and examples

All examples that illustrate illegal usage are clearly marked as "ILLEGAL
EXAMPLE".

HTML examples lacking DOCTYPE declarations are SGML Text Entities conform-
ing to the HTML 4.01 Strict DTD|[HTML4] Other HTML examples conform to the
DTDs given in the examples.

All notes are informative only.

Examples and notes are [marked within the source HTML] [p. 43] for the specifica-
tion and CSS user agents will render them specially.

32 7 Jun 2011 17:58

About the CSS 2.1 Specification

1.4.5 Images and long descriptions

Most images in the electronic version of this specification are accompanied by "long
descriptions" of what they represent. A link to the long description is denoted by a
"[D]" after the image.

Images and long descriptions are informative only.

1.5 Acknowledgments

This section is non-normative.

CSS 2.1 is based on CSS2. See the lacknowledgments section of CSS2|[p. ?7?] for
the people that contributed to CSS2.

We would like to thank the following people who, through their input and feedback
on the www-style mailing list, have helped us with the creation of this specification:
Andrew Clover, Bernd Mielke, C. Bottelier, Christian Roth, Christoph Paper, Claus
Farber, Coises, Craig Saila, Darren Ferguson, Dylan Schiemann, Etan Wexler,
George Lund, James Craig, Jan Eirik Olufsen, Jan Roland Eriksson, Joris Huizer,
Joshua Prowse, Kai Lahmann, Kevin Smith, Lachlan Cannon, Lars Knoll, Lauri Rait-
tila, Mark Gallagher, Michael Day, Peter Sheerin, Rijk van Geijtenbeek, Robin
Berjon, Scott Montgomery, Shelby Moore, Stuart Ballard, Tom Gilder, Vadim
Plessky, Peter Moulder, Anton Prowse, Gérard Talbot, Ingo Chao, Bruno Fassino,
Justin Rogers, Boris Zbarsky, Garrett Smith, Zack Weinberg, Bjoern Hoehrmann,
and the Open eBook Publication Structure Working Group Editors. We would also
like to thank Gary Schnabl, Glenn Adams and Susan Lesch who helped proofread
earlier versions of this document.

In addition, we would like to extend special thanks to Elika J. Etemad, Ada Chan
and Boris Zbarsky who have contributed significant time to CSS 2.1, and to Kimberly
Blessing for help with the editing.

Many thanks also to the following people for their help with the test suite: Robert
Stam, Aharon Lanin, Alan Gresley, Alan Harder, Alexander Dawson, Arron Eicholz,
Bernd Mielke, Bert Bos, Boris Zbarsky, Bruno Fassino, Daniel Schattenkirchner,
David Hammond, David Hyatt, Eira Monstad, Elika J. Etemad, Gérard Talbot,
Gabriele Romanato, Germain Garand, Hilbrand Edskes, lan Hickson, James
Hopkins, Justin Boss, L. David Baron, Lachlan Hunt, Magne Andersson, Marc
Pacheco, Mark McKenzie-Bell, Matt Bradley, Melinda Grant, Michael Turnwall, Ray
Kiddy, Richard Ishida, Robert O’Callahan, Simon Montagu, Tom Clancy, Vasil
Dinkov, [] and all the contributors to the CSS1 test suite.

Working Group members active during the development of this specification:
César Acebal (Universidad de Oviedo), Tab Atkins Jr. (Google, Inc.), L. David Baron
(Mozilla Foundation), Bert Bos (W3C/ERCIM), Tantek Celik (W3C Invited Experts),
Cathy Chan (Nokia), Giorgi Chavchanidze (Opera Software), John Daggett (Mozilla
Foundation), Beth Dakin (Apple, Inc.), Arron Eicholz (Microsoft Corp.), Elika J.
Etemad (W3C Invited Experts), Simon Fraser (Apple, Inc.), Sylvain Galineau
(Microsoft Corp.), Daniel Glazman (Disruptive Innovations), Molly Holzschlag (Opera

7 Jun 2011 17:58 33

About the CSS 2.1 Specification

Software), David Hyatt (Apple, Inc.), Richard Ishida (W3C/ERCIM), John Jansen
(Microsoft Corp.), Brad Kemper (W3C Invited Experts), Hakon Wium Lie (Opera
Software), Chris Lilley (W3C/ERCIM), Peter Linss (HP), Markus Mielke (Microsoft
Corp.), Alex Mogilevsky (Microsoft Corp.), David Singer (Apple Inc.), Anne van
Kesteren (Opera Software), Steve Zilles (Adobe Systems Inc.), lan Hickson (Google,

Inc.), Melinda Grant (HP), @yvind Stenhaug (Opera Software), and Paul Nelson
(Microsoft Corp.).

34 7 Jun 2011 17:58

Introduction to CSS 2.1

2 Introduction to CSS 2.1

Contents
[2.1 A brief CSS 2.1 tutorial for HTML] 3
[2.2 A brief CSS 2.1 tutorial forXmy 38
[2.3 The CSS 2.1 processingmodell 39
[2.3.1 Thecanvas] 40
[2.3.2 CSS 2.1 addressing model| e 10 |
2.4 CSS design principles] 4

2.1 A brief CSS 2.1 tutorial for HTML

This section is non-normative.

In this tutorial, we show how easy it can be to design simple style sheets. For this
tutorial, you will need to know a little HTML (see [HTML4]) and some basic desktop
publishing terminology.

We begin with a small HTML document:

<IDOCTYPE HTML PUBLIC "-//W3C//IDTD HTML 4.01//EN">
<HTML>
<HEAD>
<TITLE>Bach’s home page</TITLE>
</HEAD>
<BODY>
<H1>Bach’s home page</H1>
<P>Johann Sebastian Bach was a prolific composer.
</BODY>
</HTML>

To set the text color of the H1 elements to red, you can write the following CSS
rules:

h1 { color: red }

A CSS rule consists of two main parts: [p. 77] (h1’) and declaration
(‘color: red’). In HTML, element names are case-insensitive so 'h1’ works just as well
as 'H1'. The declaration has two parts: property name ('color’) and property value
('red’). While the example above tries to influence only one of the properties needed
for rendering an HTML document, it qualifies as a style sheet on its own. Combined
with other style sheets (one fundamental feature of CSS is that style sheets are
combined), the rule will determine the final presentation of the document.

The HTML 4 specification defines how style sheet rules may be specified for
HTML documents: either within the HTML document, or via an external style sheet.
To put the style sheet into the document, use the STYLE element:

7 Jun 2011 17:58 35

Introduction to CSS 2.1

<IDOCTYPE HTML PUBLIC "-//W3C//IDTD HTML 4.01//EN">
<HTML>
<HEAD>
<TITLE>Bach’s home page</TITLE>
<STYLE type="text/css">
hl { color: red }
</STYLE>
</HEAD>
<BODY>
<H1>Bach’s home page</H1>
<P>Johann Sebastian Bach was a prolific composer.
</BODY>
</HTML>

For maximum flexibility, we recommend that authors specify external style sheets;
they may be changed without modifying the source HTML document, and they may
be shared among several documents. To link to an external style sheet, you can use
the LINK element:

<IDOCTYPE HTML PUBLIC "-//W3C//IDTD HTML 4.01//EN">
<HTML>
<HEAD>
<TITLE>Bach’s home page</TITLE>
<LINK rel="stylesheet" href="bach.css" type="text/css">
</HEAD>
<BODY>
<H1>Bach’s home page</H1>
<P>Johann Sebastian Bach was a prolific composer.
</BODY>
</HTML>

The LINK element specifies:

e the type of link: to a "stylesheet".
® the location of the style sheet via the "href" attribute.
e the type of style sheet being linked: "text/css".

To show the close relationship between a style sheet and the structured markup,
we continue to use the STYLE element in this tutorial. Let’'s add more colors:

<IDOCTYPE HTML PUBLIC "-//W3C//IDTD HTML 4.01//EN">
<HTML>
<HEAD>
<TITLE>Bach’s home page</TITLE>
<STYLE type="text/css">
body { color: black; background: white }
h1 { color: red; background: white }
</STYLE>
</HEAD>
<BODY>
<H1>Bach’s home page</H1>
<P>Johann Sebastian Bach was a prolific composer.
</BODY>
</HTML>

36 7 Jun 2011 17:58

Introduction to CSS 2.1

The style sheet now contains four rules: the first two set the color and background
of the BODY element (it's a good idea to set the text color and background color
together), while the last two set the color and the background of the H1 element.
Since no color has been specified for the P element, it will inherit the color from its
parent element, namely BODY. The H1 element is also a child element of BODY but
the second rule overrides the inherited value. In CSS there are often such conflicts
between different values, and this specification describes how to resolve them.

CSS 2.1 has more than 90 properties, including[color] Let’s look at some of the
others:

<IDOCTYPE HTML PUBLIC "-//W3C//[DTD HTML 4.01//EN">
<HTML>
<HEAD>
<TITLE>Bach’s home page</TITLE>
<STYLE type="text/css">
body {
font-family: "Gill Sans", sans-serif;
font-size: 12pt;
margin: 3em;

}
<ISTYLE>

</HEAD>
<BODY>
<H1>Bach’s home page</H1>
<P>Johann Sebastian Bach was a prolific composer.
</BODY>
</HTML>

The first thing to notice is that several declarations are grouped within a block
enclosed by curly braces ({...}), and separated by semicolons, though the last decla-
ration may also be followed by a semicolon.

The first declaration on the BODY element sets the font family to "Gill Sans". If that
font is not available, the user agent (often referred to as a "browser") will use the
'sans-serif’ font family which is one of five generic font families which all users
agents know. Child elements of BODY will inherit the value of the [font-family] prop-
erty.

The second declaration sets the font size of the BODY element to 12 points. The
"point" unit is commonly used in print-based typography to indicate font sizes and
other length values. It's an example of an absolute unit which does not scale relative
to the environment.

The third declaration uses a relative unit which scales with regard to its surround-
ings. The "em" unit refers to the font size of the element. In this case the result is that
the margins around the BODY element are three times wider than the font size.

7 Jun 2011 17:58 37

Introduction to CSS 2.1

2.2 A brief CSS 2.1 tutorial for XML

This section is non-normative.

CSS can be used with any structured document format, for example with applica-
tions of the eXtensible Markup Language [XML10] In fact, XML depends more on
style sheets than HTML, since authors can make up their own elements that user
agents do not know how to display.

Here is a simple XML fragment:

<ARTICLE>
<HEADLINE>Fredrick the Great meets Bach</HEADLINE>
<AUTHOR>Johann Nikolaus Forkel</AUTHOR>
<PARA>
One evening, just as he was getting his
<INSTRUMENT>flute</INSTRUMENT> ready and his
musicians were assembled, an officer brought him a list of
the strangers who had arrived.
</PARA>
</ARTICLE>

To display this fragment in a document-like fashion, we must first declare which
elements are inline-level (i.e., do not cause line breaks) and which are block-level
(i.e., cause line breaks).

INSTRUMENT { display: inline }
ARTICLE, HEADLINE, AUTHOR, PARA {display: block }

The first rule declares INSTRUMENT to be inline and the second rule, with its
comma-separated list of selectors, declares all the other elements to be block-level.
Element names in XML are case-sensitive, so a selector written in lowercase (e.g.,
'instrument’) is different from uppercase (e.g., INSTRUMENT).

One way of linking a style sheet to an XML document is to use a processing
instruction:

<?xml-stylesheet type="text/css" href="bach.css"?>
<ARTICLE>
<HEADLINE>Fredrick the Great meets Bach</HEADLINE>
<AUTHOR>Johann Nikolaus Forkel</AUTHOR>
<PARA>
One evening, just as he was getting his
<INSTRUMENT>flute</INSTRUMENT> ready and his
musicians were assembled, an officer brought him a list of
the strangers who had arrived.
</PARA>
</ARTICLE>

A visual user agent could format the above example as:

38 7 Jun 2011 17:58

Introduction to CSS 2.1

Fredrick the Great meets Bach

Johann Nikolaus Forkel

One evening, just as he was getting his flute ready and his
musicians were assembled, an officer brought him a list of
the strangers who had arrived.

Notice that the word "flute" remains within the paragraph since it is the content of
the inline element INSTRUMENT.

Still, the text is not formatted the way you would expect. For example, the headline
font size should be larger than then the rest of the text, and you may want to display
the author’s name in italic:

INSTRUMENT { display: inline }

ARTICLE, HEADLINE, AUTHOR, PARA { display: block }
HEADLINE { font-size: 1.3em }

AUTHOR { font-style: italic }

ARTICLE, HEADLINE, AUTHOR, PARA { margin: 0.5em }

A visual user agent could format the above example as:

Fredrick the Great meets Bach

Johann Nikolaus Forkel

One evening, just as he was getting his flute ready and his
musicians were assembled, an officer brought him a list of
the strangers who had arrived.

Adding more rules to the style sheet will allow you to further describe the presen-
tation of the document.

2.3 The CSS 2.1 processing model

This section up to but not including its subsections is non-normative.

This section presents one possible model of how user agents that support CSS
work. This is only a conceptual model; real implementations may vary.

In this model, a user agent processes a source by going through the following
steps:

1.
2.
3.

Parse the source document and create aldocument tree[p. 45] .

Identify the target[media type] [p. 107] .

Retrieve all style sheets associated with the document that are specified for the

target[media type][p. 107] .

7 Jun 2011 17:58 39

Introduction to CSS 2.1

4. Annotate every element of the document tree by assigning a single value to
every [property] [p. 59] that is applicable to the target[media type] [p. 107] . Prop-
erties are assigned values according to the mechanisms described in the
section on|cascading and inheritance|[p. 99] .

Part of the calculation of values depends on the formatting algorithm appropri-
ate for the target[media type] [p. 107] . For example, if the target medium is the
screen, user agents apply the [visual formatting model|[p. 127] .

5. From the annotated document tree, generate a formatting structure. Often, the
formatting structure closely resembles the document tree, but it may also differ
significantly, notably when authors make use of pseudo-elements and gener-
ated content. First, the formatting structure need not be "tree-shaped" at all --
the nature of the structure depends on the implementation. Second, the format-
ting structure may contain more or less information than the document tree. For
instance, if an element in the document tree has a value of 'none’ for the
property, that element will generate nothing in the formatting structure.
A list element, on the other hand, may generate more information in the format-
ting structure: the list element’s content and list style information (e.g., a bullet
image).

Note that the CSS user agent does not alter the document tree during this
phase. In particular, content generated due to style sheets is not fed back to the
document language processor (e.g., for reparsing).

6. Transfer the formatting structure to the target medium (e.g., print the results,
display them on the screen, render them as speech, etc.).

2.3.1 The canvas

For all media, the term canvas describes "the space where the formatting structure is
rendered." The canvas is infinite for each dimension of the space, but rendering
generally occurs within a finite region of the canvas, established by the user agent
according to the target medium. For instance, user agents rendering to a screen
generally impose a minimum width and choose an initial width based on the dimen-
sions of the [viewport [p. 128] . User agents rendering to a page generally impose
width and height constraints. Aural user agents may impose limits in audio space,
but not in time.

2.3.2 CSS 2.1 addressing model

CSS 2.1[selectors]| [p. 77] and properties allow style sheets to refer to the following
parts of a document or user agent:

® Elements in the document tree and certain relationships between them (see the

section on[selectors|[p. 77]).
® Attributes of elements in the document tree, and values of those attributes (see
the section on [attribute selectors|[p. 82]).

® Some parts of element content (see the [p. 94] and [:first-letter| [p. 94]

pseudo-elements).

40 7 Jun 2011 17:58

Introduction to CSS 2.1

Elements of the document tree when they are in a certain state (see the section
on [pseudo-classes|[p. 87]).
Some aspects of the [canvas| [p. 40] where the document will be rendered.

Some system information (see the section on[user interface] [p. 297]).

2.4 CSS design principles

This section is non-normative.

CSS 2.1, as CSS2 and CSS1 before it, is based on a set of design principles:

Forward and backward compatibility . CSS 2.1 user agents will be able to
understand CSS1 style sheets. CSS1 user agents will be able to read CSS 2.1
style sheets and discard parts they do not understand. Also, user agents with no
CSS support will be able to display style-enhanced documents. Of course, the
stylistic enhancements made possible by CSS will not be rendered, but all
content will be presented.

Complementary to structured documents . Style sheets complement struc-
tured documents (e.g., HTML and XML applications), providing stylistic informa-
tion for the marked-up text. It should be easy to change the style sheet with little
or no impact on the markup.

Vendor, platform, and device independence . Style sheets enable documents
to remain vendor, platform, and device independent. Style sheets themselves
are also vendor and platform independent, but CSS 2.1 allows you to target a
style sheet for a group of devices (e.g., printers).

Maintainability . By pointing to style sheets from documents, webmasters can
simplify site maintenance and retain consistent look and feel throughout the site.
For example, if the organization’s background color changes, only one file
needs to be changed.

Simplicity . CSS is a simple style language which is human readable and
writable. The CSS properties are kept independent of each other to the largest
extent possible and there is generally only one way to achieve a certain effect.

Network performance . CSS provides for compact encodings of how to present
content. Compared to images or audio files, which are often used by authors to
achieve certain rendering effects, style sheets most often decrease the content
size. Also, fewer network connections have to be opened which further
increases network performance.

Flexibility . CSS can be applied to content in several ways. The key feature is
the ability to cascade style information specified in the default (user agent) style
sheet, user style sheets, linked style sheets, the document head, and in
attributes for the elements forming the document body.

Richness . Providing authors with a rich set of rendering effects increases the
richness of the Web as a medium of expression. Designers have been longing
for functionality commonly found in desktop publishing and slide-show applica-

7 Jun 2011 17:58 41

Introduction to CSS 2.1

tions. Some of the requested rendering effects conflict with device indepen-
dence, but CSS 2.1 goes a long way toward granting designers their requests.

Alternative language bindings . The set of CSS properties described in this
specification form a consistent formatting model for visual and aural presenta-
tions. This formatting model can be accessed through the CSS language, but
bindings to other languages are also possible. For example, a JavaScript
program may dynamically change the value of a certain element’s[color] prop-
erty.

Accessibility . Several CSS features will make the Web more accessible to
users with disabilities:

O Properties to control font appearance allow authors to eliminate inaccessi-
ble bit-mapped text images.

O Positioning properties allow authors to eliminate mark-up tricks (e.g., invisi-
ble images) to force layout.

O The semantics of limportant ~ rules mean that users with particular
presentation requirements can override the author’s style sheets.

O The 'inherit’ value for all properties improves cascading generality and
allows for easier and more consistent style tuning.

O Improved media support, including media groups and the braille,
embossed, and tty media types, will allow users and authors to tailor pages
to those devices.

Note. For more information about designing accessible documents using CSS
and HTML, see [[F(WCAG20]].

42

7 Jun 2011 17:58

Conformance: requirements and recommendations

3 Conformance: Requirements and Recommen-
dations

Contents
3.1 Definitions| 43
[3.2 UA Conformance] e 4
[3.3 Error conditions| 48
[3.4 The text/css content type] .

3.1 Definitions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in RFC 2119 (see[[RFC2119]).
However, for readability, these words do not appear in all uppercase letters in this
specification.

At times, this specification recommends good practice for authors and user
agents. These recommendations are not normative and conformance with this speci-
fication does not depend on their realization. These recommendations contain the
expression "We recommend ...", "This specification recommends ...", or some similar
wording.

The fact that a feature is marked as deprecated (namely the [aural] [p. 305]
keyword) or going to be deprecated in CSS3 (namely the [system colorg| [p. 298])
also has no influence on conformance. (For example, 'aural’ is marked as
non-normative, so UAs do not need to support it; the system colors are normative,
so UAs must support them.)

All sections of this specification, including appendices, are normative unless other-
wise noted.

[Examples and notes|[p. 32] are not normative.

Example(s):

Examples usually have the word "example" near their start ("Example:”, "The
following example[]," "For example," etc.) and are shown in the color maroon, like
this paragraph.

Notes start with the word "Note," are indented and shown in green, like this para-
graph.

Figures are for illustration only. They are not reference renderings, unless explic-
itly stated.

7 Jun 2011 17:58 43

Conformance: requirements and recommendations

Style sheet
A set of statements that specify presentation of a document.

Style sheets may have three different origins: [p. 46] ,[user [p. 46] , and

[p. 46] . The interaction of these sources is described in the section
on|cascading and inheritance|[p. 99] .

Valid style sheet
The validity of a style sheet depends on the level of CSS used for the style
sheet. All valid CSS1 style sheets are valid CSS 2.1 style sheets, but some
changes from CSS1 mean that a few CSS1 style sheets will have slightly differ-
ent semantics in CSS 2.1. Some features in CSS2 are not part of CSS 2.1, so
not all CSS2 style sheets are valid CSS 2.1 style sheets.

A valid CSS 2.1 style sheet must be written according to the [grammar of]

[CSS 2.1][p. 467] . Furthermore, it must contain only at-rules, property names,
and property values defined in this specification. An illegal (invalid) at-rule,
property name, or property value is one that is not valid.

Source document
The document to which one or more style sheets apply. This is encoded in
some language that represents the document as a tree of[elements| [p. 44] .
Each element consists of a name that identifies the type of element, optionally a
number of [attributes| [p. 45] , and a (possibly empty) [content] [p. 45] . For
example, the source document could be an XML or SGML instance.

Document language
The encoding language of the source document (e.g., HTML, XHTML, or SVG).
CSS is used to describe the presentation of document languages and CSS does
not change the underlying semantics of the document languages.

Element
(An SGML term, see [[ISO8879]) The primary syntactic constructs of the docu-
ment language. Most CSS style sheet rules use the names of these elements
(such as P, TABLE, and OL in HTML) to specify how the elements should be
rendered.

Replaced element

An element whose content is outside the scope of the CSS formatting model,
such as an image, embedded document, or applet. For example, the content of
the HTML IMG element is often replaced by the image that its "src" attribute
designates. Replaced elements often have intrinsic dimensions: an intrinsic
width, an intrinsic height, and an intrinsic ratio. For example, a bitmap image
has an intrinsic width and an intrinsic height specified in absolute units (from
which the intrinsic ratio can obviously be determined). On the other hand, other
documents may not have any intrinsic dimensions (for example, a blank HTML
document).

User agents may consider a replaced element to not have any intrinsic dimen-
sions if it is believed that those dimensions could leak sensitive information to a
third party. For example, if an HTML document changed intrinsic size depending
on the user’s bank balance, then the UA might want to act as if that resource
had no intrinsic dimensions.

44 7 Jun 2011 17:58

Conformance: requirements and recommendations

The content of replaced elements is not considered in the CSS rendering

model.

Intrinsic dimensions
The width and height as defined by the element itself, not imposed by the
surroundings. CSS does not define how the intrinsic dimensions are found. In
CSS 2.1 only replaced elements can come with intrinsic dimensions. For raster
images without reliable resolution information, a size of 1 px unit per image
source pixel must be assumed.

Attribute
A value associated with an element, consisting of a name, and an associated
(textual) value.

Content
The content associated with an element in the source document. Some
elements have no content, in which case they are called empty . The content of
an element may include text, and it may include a number of sub-elements, in
which case the element is called the parent of those sub-elements.

Ignore
This term has two slightly different meanings in this specification. First, a CSS
parser must follow certain rules when it discovers unknown or illegal syntax in a
style sheet. The parser must then ignore certain parts of the style sheets. The
exact rules for which parts must be ignored are described in these sections
(Declarations and properties,|[p. 59][Rules for handling parsing errors,| [p. 60]
[Unsupported Values]| [p. 71]) or may be explained in the text where the term
"ignore" appears. Second, a user agent may (and, in some cases must) disre-
gard certain properties or values in the style sheet, even if the syntax is legal.
For example, table-column elements cannot affect the font of the column, so the
font properties must be ignored.

Rendered content
The content of an element after the rendering that applies to it according to the
relevant style sheets has been applied. How a replaced element’s content is
rendered is not defined by this specification. Rendered content may also be
alternate text for an element (e.g., the value of the XHTML "alt" attribute), and
may include items inserted implicitly or explicitly by the style sheet, such as
bullets, numbering, etc.

Document tree
The tree of elements encoded in the source document. Each element in this tree
has exactly one parent, with the exception of the root element, which has none.

Child
An element A is called the child of element B if and only if B is the parent of A.

Descendant
An element A is called a descendant of an element B, if either (1) A is a child of
B, or (2) A is the child of some element C that is a descendant of B.

Ancestor
An element A is called an ancestor of an element B, if and only if B is a descen-
dant of A.

7 Jun 2011 17:58 45

Conformance: requirements and recommendations

Sibling
An element A is called a sibling of an element B, if and only if B and A share the
same parent element. Element A is a preceding sibling if it comes before B in
the document tree. Element B is a following sibling if it comes after A in the
document tree.

Preceding element
An element A is called a preceding element of an element B, if and only if (1) A
is an ancestor of B or (2) A is a preceding sibling of B.

Following element
An element A is called a following element of an element B, if and only if B is a
preceding element of A.

Author
An author is a person who writes documents and associated style sheets. An
authoring tool is a[User Agent][p. 46] that generates style sheets.

User
A user is a person who interacts with a user agent to view, hear, or otherwise
use a document and its associated style sheet. The user may provide a
personal style sheet that encodes personal preferences.

User agent (UA)
A user agent is any program that interprets a document written in the document
language and applies associated style sheets according to the terms of this
specification. A user agent may display a document, read it aloud, cause it to be
printed, convert it to another format, etc.
An HTML user agent is one that supports one or more of the HTML specifica-
tions. A user agent that supports XHTML [[XHTML], but not HTML is not consid-
ered an HTML user agent for the purpose of conformance with this specification.

Property
CSS defines a finite set of parameters, called properties, that direct the render-
ing of a document. Each property has a name (e.g., 'color’, 'font’, or border’) and
a value (e.g., 'red’, '12pt Times’, or 'dotted’). Properties are attached to various
parts of the document and to the page on which the document is to be displayed
by the mechanisms of specificity, cascading, and inheritance (see the chapter
on|Assigning property values, Cascading, and Inheritancel[p. 99]).

Here is an example of a source document written in HTML:

<IDOCTYPE HTML PUBLIC "-//W3C//IDTD HTML 4.01//EN">
<HTML>
<TITLE>My home page</TITLE>
<BODY>
<H1>My home page</H1>
<P>Welcome to my home page! Let me tell you about my favorite
COMpOSers:

 Elvis Costello
 Johannes Brahms

46 7 Jun 2011 17:58

Conformance: requirements and recommendations

 Georges Brassens

</BODY>
</HTML>

This results in the following tree:
HTML

/ \
HEAD BODY

H1 P UL
RN
LI LI LI

According to the definition of HTML 4, HEAD elements will be inferred during
parsing and become part of the document tree even if the "head" tags are not in the
document source. Similarly, the parser knows where the P and LI elements end,
even though there are no </p> and tags in the source.

TITLE

Documents written in XHTML (and other XML-based languages) behave differ-
ently: there are no inferred elements and all elements must have end tags.

3.2 UA Conformance

This section defines conformance with the CSS 2.1 specification only. There may be
other levels of CSS in the future that may require a user agent to implement a differ-
ent set of features in order to conform.

In general, the following points must be observed by a user agent claiming confor-
mance to this specification:

1. It must recognize one or more of the CSS 2.1[media types] [p. 107] .

2. For each source document, it must attempt to retrieve all associated style
sheets that are appropriate for the recognized media types. If it cannot retrieve
all associated style sheets (for instance, because of network errors), it must
display the document using those it can retrieve.

3. It must parse the style sheets according to this specification. In particular, it
must recognize all at-rules, blocks, declarations, and selectors (see the
[grammar of CSS 2.1|[p. 467]). If a user agent encounters a property that
applies for a supported media type, the user agent must parse the value accord-
ing to the property definition. This means that the user agent must accept all
valid values and must ignore declarations with invalid values. User agents must
ignore rules that apply to unsupported [media types| [p. 107] .

4. For each element in aldocument tregf [p. 45] , it must assign a value for every
property according to the property’s definition and the rules of|cascading and |
[p. 99] .

5. If the source document comes with alternate style sheet sets (such as with the

7 Jun 2011 17:58 a7

Conformance: requirements and recommendations

"alternate" keyword in HTML 4 [[HTML4]), the UA must allow the user to select
which style sheet set the UA should apply.

6. The UA must allow the user to turn off the influence of author style sheets.
Not every user agent must observe every point, however:

® An application that reads style sheets without rendering any content (e.g., a
CSS 2.1 validator) must respect points 1-3.

® An authoring tool is only required to output|valid style sheets|[p. 44]

® A user agent that renders a document with associated style sheets must respect
points 1-6 and render the document according to the media-specific require-
ments set forth in this specification. [p. 100] may be approximated when
required by the user agent.

The inability of a user agent to implement part of this specification due to the limi-
tations of a particular device (e.g., a user agent cannot render colors on a
monochrome monitor or page) does not imply non-conformance.

UAs must allow users to specify a file that contains the user style sheet. UAs that
run on devices without any means of writing or specifying files are exempted from
this requirement. Additionally, UAs may offer other means to specify user prefer-
ences, for example, through a GUI.

CSS 2.1 does not define which properties apply to form controls and frames, or
how CSS can be used to style them. User agents may apply CSS properties to these
elements. Authors are recommended to treat such support as experimental. A future
level of CSS may specify this further.

3.3 Error conditions

In general, this document specifies error handling behavior throughout the specifica-
tion. For example, see the [rules for handling parsing errors| [p. 60] .

3.4 The text/css content type

CSS style sheets that exist in separate files are sent over the Internet as a sequence
of bytes accompanied by encoding information. The structure of the transmission,
termed a message entity, is defined by RFC 2045 and RFC 2616 (see [REC2045]
and[REC2616]). A message entity with a content type of "text/css" represents an
independent CSS document. The "text/css" content type has been registered by

RFC 2318 ([REC2318]).

48 7 Jun 2011 17:58

Syntax and basic data types

4 Syntax and basic data types

Contents

:
[4.1.1 Tokenization|

[4.1.2 Keywords|
|4.1.2.1 Vendor-specific extensions|
[4.1.2.2 Informative Historical Notes| .

|4.1.3 Characters and case|

INIFN
.
D
)
—
Q
2
@
3
D
>
=1
174

.1.5 At-rules .
4.1.6 Blocks| . . .

|4.1.7 Rule sets, declaration blocks, and selectors]

|4.1.8 Declarations and properties|

[4.1.9 Comments| ..
|4.2 Rules for handling parsing errors| .

[4.3.1 Integers and real numbers| .

4.3.2 Lengths|

|4.3.3 Percentages|

N | FN]FN
w||w
15 [EN
@] [e=
2||R
3|
@
wl|3]

C
Y
O |

.3.6 Colors .
.3.7 Strings .
|4.3.8 Unsupported Values|
|4.4 CSS style sheet representation|

i

|4.4.1 Referring to characters not represented in a

character encoding|

4.1 Syntax

49
50
83
94
94
55
56
57
87
28
a9
60
60
63
63
63
67
67
68
69
70
71
71

This section describes a grammar (and forward-compatible parsing rules) common

to any level of CSS (including CSS 2.1). Future updates of CSS will adhere to this

core syntax, although they may add additional syntactic constraints.

These descriptions are normative. They are also complemented by the normative

grammar rules presented in[Appendix G| [p. 467] .

In this specification, the expressions "immediately before" or "immediately after"
mean with no intervening white space or comments.

7 Jun 2011 17:58

49

Syntax and basic data types

4.1.1 Tokenization

All levels of CSS — level 1, level 2, and any future levels — use the same core
syntax. This allows UAs to parse (though not completely understand) style sheets
written in levels of CSS that did not exist at the time the UAs were created. Design-
ers can use this feature to create style sheets that work with older user agents, while
also exercising the possibilities of the latest levels of CSS.

At the lexical level, CSS style sheets consist of a sequence of tokens. The list of
tokens for CSS is as follows. The definitions use Lex-style regular expressions. Octal
codes refer to ISO 10646 ([ISO10646]). As in Lex, in case of multiple matches, the
longest match determines the token.

50 7 Jun 2011 17:58

Syntax and basic data types

Token Definition
IDENT {ident}
ATKEYWORD @i dent}
STRING {string}
BAD_STRING {badstring}
BAD_URI {baduri}

BAD_COMMENT {badcoment }

HASH #{ nanme}
NUMBER {nun}
PERCENTAGE {nunt %
DIMENSION {nun}{ident}
URI urh({w}{string}{w}\) N
[urh({w} (['#$%&*-\[\]-~]| {nonascii}| {escape})* {w}))

UNICODE-RANGE u\+[0-9a-?]{1,6}(-[0-9a-fl{1,6})?

CDO <I--

CcDC >

{ \{

} \}

(\(

) \)

[\[

] \]

S [\t\n\n\f+
COMMENT VA A O S [R RV
FUNCTION {ident}\(
INCLUDES =
DASHMATCH I=

any other character not matched by the above rules, and neither a

DELIM single nor a double quote

7 Jun 2011 17:58

Syntax and basic data types

The macros in curly braces ({}) above are defined as follows:

Macro Definition

ident [[]? {nmstart}{nncthar}*

name {nnthar}+

nmstart [a-z]] {nonascii}|{escape}

nonascii [M0-\237]

unicode \\[0-9a-f]{1,6}(\r\n|[\n\r\t\f])?

escape {uni code} [\™Mn\r\fO-9a-f]

nmchar [a-z0-9-]| {nonascii}|{escape}

num [0-9]+|[0-9]*\.[0-9]+
string {stringl}|{string2}
stringl \"(PNNARNT NN} {escape})*\"
string2 V(NN \N{nl} {escape})*\
badstring {badstringl}|{badstring2}

badstringl \"(MNAAAN\N{NT} {escape})*\?
badstring2 V(NN N{NI} {escape})*\?
badcomment {badcoment 1} | { badconment 2}
badcommentl V\F[AH*+([AF][M*]F*+)*

badcomment2 \\F[M*F(\F+[N*][M*]*)*

baduri {baduri 1} | { baduri 2} | { baduri 3}
baduril urh({w} ('#$%&*-~]] {nonascii}|{escape})* {w}
baduri2 urh({w}{string}{w}

baduri3 urh({w} {badstri ng}

] \n\r\n|\r|\f

w [\\rAn\f]*

Example(s):

52

7 Jun 2011 17:58

Syntax and basic data types

For example, the rule of the longest match means that "red--> " is tokenized as
the IDENT "red-- " followed by the DELIM ">", rather than as an IDENT followed by
a CDC.

Below is the core syntax for CSS. The sections that follow describe how to use it.
[p. 467] describes a more restrictive grammar that is closer to the CSS
level 2 language. Parts of style sheets that can be parsed according to this grammar
but not according to the grammar in Appendix G are among the parts that will be
ignored according to the|rules for handling parsing errors|[p. 60] .

stylesheet : [CDO | CDC | S | statement J*;
statement : ruleset | at-rule;
at-rule : ATKEYWORD S* any* [block | ;" S*];
block ' S*[any | block | ATKEYWORD S* |’ S*]* '} S*;
ruleset : selector? '{’ S* declaration? [’;’ S* declaration?]* '}’ S*;
selector : any+;
declaration : property S* .’ S* value;
property : IDENT;
value :[any | block | ATKEYWORD S*]+;
any :[IDENT | NUMBER | PERCENTAGE | DIMENSION | STRING
| DELIM | URI | HASH | UNICODE-RANGE | INCLUDES
| DASHMATCH |’ | FUNCTION S* [any|unused]* ')’
| 'C S* [any|unused]*)’ | T S* [any|unused]* ']’
1S
unused :block | ATKEYWORD S*|';’ S*| CDO S* | CDC S¥,

The "unused" production is not used in CSS and will not be used by any future

extension. Itis included here only to help with error handling. (See |4.2 "Rules fo
[handling parsing errors."|[p. 60])

COMMENT tokens do not occur in the grammar (to keep it readable), but any
number of these tokens may appear anywhere outside other tokens. (Note, however,
that a comment before or within the @charset rule disables the @charset.)

The token S in the grammar above stands for white space. Only the characters
"space" (U+0020), "tab" (U+0009), "line feed" (U+000A), "carriage return" (U+000D),
and "form feed" (U+000C) can occur in white space. Other space-like characters,
such as "em-space" (U+2003) and "ideographic space" (U+3000), are never part of
white space.

The meaning of input that cannot be tokenized or parsed is undefined in CSS 2.1.

4.1.2 Keywords

Keywords have the form of [dentifiers] [p. 55] Keywords must not be placed between
quotes ("..." or '..."). Thus,

red

is a keyword, but

nredu

7 Jun 2011 17:58 53

Syntax and basic data types

is not. (It is a[string][p. 70] .) Other illegal examples:
lllegal example(s):

width: "auto";
border: "none";
background: "red";

4.1.2.1 Vendor-specific extensions

In CSS, identifiers may begin with '-’ (dash) or ’_’ (underscore). Keywords and [prop
[p. 59] beginning with - * or ’_’ are reserved for vendor-specific exten-
sions. Such vendor-specific extensions should have one of the following formats:

-’ + vendor identifier + -’ + meaningful name
' '+ vendor identifier + ’-" + meaningful name

Example(s):

For example, if XYZ organization added a property to describe the color of the
border on the East side of the display, they might call it -xyz-border-east-color.

Other known examples:

-moz-box-sizing
-moz-border-radius
-wap-accesskey

An initial dash or underscore is guaranteed never to be used in a property or
keyword by any current or future level of CSS. Thus typical CSS implementations
may not recognize such properties and may ignore them according to the[rules foi
[handling parsing errors|[p. 60] . However, because the initial dash or underscore is
part of the grammar, CSS 2.1 implementers should always be able to use a
CSS-conforming parser, whether or not they support any vendor-specific extensions.

Authors should avoid vendor-specific extensions

4.1.2.2 Informative Historical Notes
This section is informative.

At the time of writing, the following prefixes are known to exist:

54 7 Jun 2011 17:58

Syntax and basic data types

prefix organization
-ms- , mso- | Microsoft
-moz- Mozilla
-0- , -XV- Opera Software
-atsc- Advanced Television Standards Committee
-wap- The WAP Forum
-khtml- KDE
-webkit- Apple
prince- YesLogic
-ah- Antenna House
-hp- Hewlett Packard
-ro- Real Objects
-rim- Research In Motion
-tc- TallComponents

4.1.3 Characters and case

The following rules always hold:

® All CSS syntax is case-insensitive within the ASCII range (i.e., [a-z] and [A-Z]

are equivalent), except for parts that are not under the control of CSS. For
example, the case-sensitivity of values of the HTML attributes "id" and "class",
of font names, and of URIs lies outside the scope of this specification. Note in
particular that element names are case-insensitive in HTML, but case-sensitive
in XML.

In CSS, identifiers (including element names, classes, and IDs in[selectors]

[p. 77]) can contain only the characters [a-zA-Z0-9] and ISO 10646 characters
U+00AO and higher, plus the hyphen (-) and the underscore (); they cannot
start with a digit, two hyphens, or a hyphen followed by a digit. Identifiers can
also contain escaped characters and any ISO 10646 character as a numeric
code (see next item). For instance, the identifier "B&W?" may be written as
"B\&W\?" or "B\26 W\3F".

Note that Unicode is code-by-code equivalent to ISO 10646 (see [UNICODE
and[[1SO10646]).
In CSS 2.1, a backslash (\) character can indicate one of three types of charac-

ter escape. Inside a CSS comment, a backslash stands for itself, and if a back-
slash is immediately followed by the end of the style sheet, it also stands for

7 Jun 2011 17:58 55

Syntax and basic data types

itself (i.e., a DELIM token).

First, inside a[string|[p. 70] , a backslash followed by a newline is ignored (i.e.,
the string is deemed not to contain either the backslash or the newline). Outside
a string, a backslash followed by a newline stands for itself (i.e., a DELIM
followed by a newline).

Second, it cancels the meaning of special CSS characters. Any character
(except a hexadecimal digit, linefeed, carriage return, or form feed) can be
escaped with a backslash to remove its special meaning. For example, "\"" is
a string consisting of one double quote. Style sheet preprocessors must not
remove these backslashes from a style sheet since that would change the style
sheet’s meaning.

Third, backslash escapes allow authors to refer to characters they cannot
easily put in a document. In this case, the backslash is followed by at most six
hexadecimal digits (0..9A..F), which stand for the ISO 10646 char-
acter with that number, which must not be zero. (It is undefined in CSS 2.1 what
happens if a style sheet does contain a character with Unicode codepoint zero.)
If a character in the range [0-9a-fA-F] follows the hexadecimal number, the end
of the number needs to be made clear. There are two ways to do that:

1. with a space (or other white space character): "\26 B" ("&B"). In this case,
user agents should treat a "CR/LF" pair (U+000D/U+000A) as a single
white space character.

2. by providing exactly 6 hexadecimal digits: "\O00026B" ("&B")

In fact, these two methods may be combined. Only one white space character
is ignored after a hexadecimal escape. Note that this means that a "real" space
after the escape sequence must be doubled.

If the number is outside the range allowed by Unicode (e.g., "\110000" is
above the maximum 10FFFF allowed in current Unicode), the UA may replace
the escape with the "replacement character" (U+FFFD). If the character is to be
displayed, the UA should show a visible symbol, such as a "missing character"
glyph (cf.[15.2] [p. 241] point 5).

Note: Backslash escapes are always considered to be part of an [identifier]
[p. 55] or a string (i.e., "\7B" is not punctuation, even though "{" is, and "\32" is
allowed at the start of a class name, even though "2" is not).

The identifier "te\st" is exactly the same identifier as "test".

4.1.4 Statements

A CSS style sheet, for any level of CSS, consists of a list of statements (see the
[p. 50] above). There are two kinds of statements: at-rules and rule sets.

There may be [white space] [p. 53] around the statements.

56

7 Jun 2011 17:58

Syntax and basic data types

4.1.5 At-rules

At-rules start with an at-keyword, an '@’ character followed immediately by an [identi]
fiier [p. 55] (for example, ’@import’, '@page’).

An at-rule consists of everything up to and including the next semicolon (;) or the
next [p. 57] whichever comes first.

CSS 2.1 user agents must[ignore] [p. 60] any [@import] [p. 102] rule that occurs
inside afblocK| [p. 57] or after any non-ignored statement other than an @charset or

an @import rule.
lllegal example(s):
Assume, for example, that a CSS 2.1 parser encounters this style sheet:

@import "subs.css";
h1 { color: blue }
@import "list.css";

The second '@import’ is illegal according to CSS 2.1. The CSS 2.1 parser|[ignores]
[p. 60] the whole at-rule, effectively reducing the style sheet to:

@import "subs.css";
h1 { color: blue }

lllegal example(s):
In the following example, the second '@import’ rule is invalid, since it occurs inside

a’'@media’ blocK [p. 57] .

@import "subs.css";
@media print {
@import "print-main.css";
body { font-size: 10pt }

h1 {color: blue }

Instead, to achieve the effect of only importing a style sheet for 'print’ media, use
the @import rule with media syntax, e.g.:

@import "subs.css";
@import "print-main.css" print;
@media print {

body { font-size: 10pt }

h1 {color: blue }

4.1.6 Blocks

A block starts with a left curly brace ({) and ends with the matching right curly brace
(). In between there may be any tokens, except that parentheses (()), brackets ([]),
and braces ({ }) must always occur in matching pairs and may be nested. Single (')
and double quotes () must also occur in matching pairs, and characters between
them are parsed as a string. See [Tokenization] [p. 50] above for the definition of a

7 Jun 2011 17:58 57

Syntax and basic data types

string.

lllegal example(s):

Here is an example of a block. Note that the right brace between the double
quotes does not match the opening brace of the block, and that the second single

guote is anjescaped character|[p. 55] , and thus does not match the first single
quote:

{causta: "}" + ({7} *'\") }

Note that the above rule is not valid CSS 2.1, but it is still a block as defined
above.

4.1.7 Rule sets, declaration blocks, and selectors

A rule set (also called "rule") consists of a selector followed by a declaration block.

A declaration block starts with a left curly brace ({) and ends with the matching
right curly brace (}). In between there must be a list of zero or more semicolon-sepa-
rated (;) declarations.

The selector (see also the section on[selectors| [p. 77]) consists of everything up
to (but not including) the first left curly brace ({). A selector always goes together with
a declaration block. When a user agent cannot parse the selector (i.e., it is not valid
CSS 2.1), it must[ignore] [p. 60] the selector and the following declaration block (if
any) as well.

CSS 2.1 gives a special meaning to the comma (,) in selectors. However, since it
is not known if the comma may acquire other meanings in future updates of CSS,
the whole statement should be ignored] [p. 60] if there is an error anywhere in the
selector, even though the rest of the selector may look reasonable in CSS 2.1.

lllegal example(s):

For example, since the "&" is not a valid token in a CSS 2.1 selector, a CSS 2.1
user agent must[ignore] [p. 60] the whole second line, and not set the color of H3 to
red:

h1, h2 {color: green }
h3, h4 & h5 {color: red }
h6 {color: black }

Example(s):

Here is a more complex example. The first two pairs of curly braces are inside a
string, and do not mark the end of the selector. This is a valid CSS 2.1 rule.

58 7 Jun 2011 17:58

Syntax and basic data types

p[example="public class foo\

QA

\
foo(int x) {\
this.x = x;\
n

\
}"1{ color: red }

private int x;\

4.1.8 Declarations and properties

A declaration is either empty or consists of a property name, followed by a colon (),
followed by a property value. Around each of these there may be [white space] [p. 53]

Because of the way selectors work, multiple declarations for the same selector
may be organized into semicolon (;) separated groups.

Example(s):
Thus, the following rules:

h1 { font-weight: bold }

h1l { font-size: 12px }

hl { line-height: 14px }

h1 { font-family: Helvetica }
h1 { font-variant: normal }
h1 { font-style: normal }

are equivalent to:

h1 {
font-weight: bold;
font-size: 12px;
line-height: 14px;
font-family: Helvetica;
font-variant: normal;
font-style: normal

}

A property name is an [identifief] [p. 55] . Any token may occur in the property
value. Parentheses ("()"), brackets ("[]"), braces ("{ }"), single quotes (’), and double
quotes (") must come in matching pairs, and semicolons not in strings must be
[escaped|[p. 55] . Parentheses, brackets, and braces may be nested. Inside the
guotes, characters are parsed as a string.

The syntax of values is specified separately for each property, but in any case,
values are built from identifiers, strings, numbers, lengths, percentages, URIs,
colors, etc.

A user agent mustfignore] [p. 60] a declaration with an invalid property name or an
invalid value. Every CSS property has its own syntactic and semantic restrictions on
the values it accepts.

7 Jun 2011 17:58 59

Syntax and basic data types

lllegal example(s):
For example, assume a CSS 2.1 parser encounters this style sheet:

h1 { color: red; font-style: 12pt } /* Invalid value: 12pt */

p { color: blue; font-vendor: any; /* Invalid prop.: font-vendor */
font-variant: small-caps }

em em { font-style: normal }

The second declaration on the first line has an invalid value '12pt’. The second
declaration on the second line contains an undefined property 'font-vendor’. The
CSS 2.1 parser will[ignore] [p. 60] these declarations, effectively reducing the style
sheet to:

h1l { color: red; }
p { color: blue; font-variant: small-caps }
em em { font-style: normal }

4.1.9 Comments

Comments begin with the characters "/*" and end with the characters "*/". They may
occur anywhere outside other tokens, and their contents have no influence on the
rendering. Comments may not be nested.

CSS also allows the SGML comment delimiters ("<!--" and "-->") in certain places
defined by the grammar, but they do not delimit CSS comments. They are permitted
so that style rules appearing in an HTML source document (in the STYLE element)
may be hidden from pre-HTML 3.2 user agents. See the HTML 4 specification

((HTMLA4]) for more information.

4.2 Rules for handling parsing errors

In some cases, user agents must ignore part of an illegal style sheet. This specifica-
tion defines ignore to mean that the user agent parses the illegal part (in order to find
its beginning and end), but otherwise acts as if it had not been there. CSS 2.1
reserves for future updates of CSS all property:value combinations and @-keywords
that do not contain an identifier beginning with dash or underscore. Implementations
must ignore such combinations (other than those introduced by future updates of
CSS).

To ensure that new properties and new values for existing properties can be
added in the future, user agents are required to obey the following rules when they
encounter the following scenarios:

e Unknown properties. User agents must[ignore] [p. 60] a[declaration] [p. 59] with

an unknown property. For example, if the style sheet is:

h1 { color: red; rotation: 70minutes }

60 7 Jun 2011 17:58

Syntax and basic data types

the user agent will treat this as if the style sheet had been

hl { color: red }

® |llegal values. User agents must ignore a declaration with an illegal value. For
example:

img { float: left } [* correct CSS 2.1 */

img { float: left here } /* "here" is not a value of 'float’ */

img { background: "red" } /* keywords cannot be quoted */

img { border-width: 3} /* a unit must be specified for length values */

A CSS 2.1 parser would honor the first rule and[ignore] [p. 60] the rest, as if the
style sheet had been:

img { float: left }
img { }
img { }
img {}

A user agent conforming to a future CSS specification may accept one or
more of the other rules as well.

e Malformed declarations. User agents must handle unexpected tokens encoun-
tered while parsing a declaration by reading until the end of the declaration,
while observing the rules for matching pairs of (), [, {}, ", and ", and correctly
handling escapes. For example, a malformed declaration may be missing a
property name, colon (:), or property value. The following are all equivalent:

p { color:green }

p { color:green; color } /* malformed declaration missing "', value */

p { color:red; color; color:green } /* same with expected recovery */

p { color:green; color: } /* malformed declaration missing value */

p { color:ired; color:; color:green } /* same with expected recovery */

p { color:green; color{;color:maroon} } /* unexpected tokens { } */

p { color:red; color{;color:maroon}; color:green } /* same with recovery */

e Malformed statements. User agents must handle unexpected tokens encoun-
tered while parsing a statement by reading until the end of the statement, while
observing the rules for matching pairs of (), [], {}, ™, and ", and correctly
handling escapes. For example, a malformed statement may contain an unex-
pected closing brace or at-keyword. E.g., the following lines are all ignored:

p @here {color: red} /* ruleset with unexpected at-keyword "@here" */
@foo @bar; [* at-rule with unexpected at-keyword "@bar" */
B{-B I* ruleset with unexpected right brace */

) ({3) p {color: red } /* ruleset with unexpected right parenthesis */

® At-rules with unknown at-keywords. User agents mustfignore] [p. 60] an
invalid at-keyword together with everything following it, up to the end of the
block that contains the invalid at-keyword, or up to and including the next semi-
colon (;), or up to and including the next block ({...}), whichever comes first. For
example, consider the following:

7 Jun 2011 17:58 61

Syntax and basic data types

@three-dee {
@background-lighting {
azimuth: 30deg;
elevation: 190deg;

}

hl { color: red }
}
h1 { color: blue }

The '@three-dee’ at-rule is not part of CSS 2.1. Therefore, the whole at-rule
(up to, and including, the third right curly brace) is[ignored] [p. 60] A CSS 2.1
user agent[ignoreg| [p. 60] it, effectively reducing the style sheet to:

h1 { color: blue }

Something inside an at-rule that is ignored because it is invalid, such as an
invalid declaration within an @media-rule, does not make the entire at-rule
invalid.

® Unexpected end of style sheet.
User agents must close all open constructs (for example: blocks, parenthe-
ses, brackets, rules, strings, and comments) at the end of the style sheet. For
example:

@media screen {
p:before { content: 'Hello

would be treated the same as:

@media screen {
p:before { content: 'Hello’; }

}

in a conformant UA.

® Unexpected end of string.
User agents must close strings upon reaching the end of a line (i.e., before an
unescaped line feed, carriage return or form feed character), but then drop the
construct (declaration or rule) in which the string was found. For example:

p{
color: green;
font-family: 'Courier New Times
color: red;
color: green;

}
...would be treated the same as:
p { color: green; color: green; }

...because the second declaration (from 'font-family’ to the semicolon after
‘color: red’) is invalid and is dropped.

62 7 Jun 2011 17:58

Syntax and basic data types

® See also|Rule sets, declaration blocks, and selectors|[p. 58] for parsing rules for
declaration blocks.

4.3 Values

4.3.1 Integers and real numbers

Some value types may have integer values (denoted by <integer>) or real number
values (denoted by <number>). Real numbers and integers are specified in decimal
notation only. An <integer> consists of one or more digits "0" to "9". A <number> can
either be an <integer>, or it can be zero or more digits followed by a dot (.) followed
by one or more digits. Both integers and real numbers may be preceded by a "-" or
"+" to indicate the sign. -0 is equivalent to 0 and is not a negative number.

Note that many properties that allow an integer or real number as a value actually
restrict the value to some range, often to a non-negative value.

4.3.2 Lengths

Lengths refer to distance measurements.

The format of a length value (denoted by <length> in this specification) is a
(with or without a decimal point) immediately followed by a unit identifier
(e.g., px, em, etc.). After a zero length, the unit identifier is optional.

Some properties allow negative length values, but this may complicate the format-
ting model and there may be implementation-specific limits. If a negative length
value cannot be supported, it should be converted to the nearest value that can be
supported.

If a negative length value is set on a property that does not allow negative length
values, the declaration is ignored.

In cases where the [used] [p. 100] length cannot be supported, user agents must
approximate it in the [actual value] [p. 100]

There are two types of length units: relative and absolute. Relative length units
specify a length relative to another length property. Style sheets that use relative
units can more easily scale from one output environment to another.

Relative units are:

e em:the of the relevant font

e ex: the 'x-height’ of the relevant font

Example(s):

hl { margin: 0.5em} /*em?*/
hl { margin: 1ex } I*ex*/

7 Jun 2011 17:58 63

Syntax and basic data types

The 'em’ unit is equal to the computed value of the[font-size] property of the
element on which it is used. The exception is when 'em’ occurs in the value of the
‘font-size’ property itself, in which case it refers to the font size of the parent element.
It may be used for vertical or horizontal measurement. (This unit is also sometimes
called the quad-width in typographic texts.)

The ’ex’ unit is defined by the element’s first available font. The exception is when
'ex’ occurs in the value of the [font-size] property, in which case it refers to the 'ex’ of
the parent element.

The 'x-height’ is so called because it is often equal to the height of the lowercase
"X". However, an 'ex’ is defined even for fonts that do not contain an "x".

The x-height of a font can be found in different ways. Some fonts contain reliable
metrics for the x-height. If reliable font metrics are not available, UAs may determine
the x-height from the height of a lowercase glyph. One possible heuristic is to look at
how far the glyph for the lowercase "0" extends below the baseline, and subtract that
value from the top of its bounding box. In the cases where it is impossible or imprac-
tical to determine the x-height, a value of 0.5em should be used.

Example(s):

The rule:

h1l { line-height: 1.2em }

means that the line height of "h1" elements will be 20% greater than the font size
of the "h1" elements. On the other hand:

h1 { font-size: 1.2em }
means that the font-size of "h1" elements will be 20% greater than the font size
inherited by "h1" elements.

When specified for the root of the |[document treg|[p. 45] (e.g., "HTML" in HTML),
'em’ and ’ex’ refer to the property’s|initial value] [p. 31] .

Child elements do not inherit the relative values specified for their parent; they
inherit the computed values|[p. 100] .

Example(s):

In the following rules, the computed [text-indent] value of "h1" elements will be
36px, not 45px, if "h1" is a child of the "body" element.

body {
font-size: 12px;
text-indent: 3em; /*i.e., 36px */

}
h1 { font-size: 15px }

Absolute length units are fixed in relation to each other. They are mainly useful
when the output environment is known. The absolute units consist of the physical
units (in, cm, mm, pt, pc) and the px unit:

64 7 Jun 2011 17:58

Syntax and basic data types

in: inches — 1in is equal to 2.54cm.

cm: centimeters

mm: millimeters

pt: points — the points used by CSS are equal to 1/72nd of lin.
pc: picas — 1pc is equal to 12pt.

px: pixel units — 1px is equal to 0.75pt.

For a CSS device, these dimensions are either anchored (i) by relating the physi-
cal units to their physical measurements, or (ii) by relating the pixel unit to the refer-
ence pixel. For print media and similar high-resolution devices, the anchor unit
should be one of the standard physical units (inches, centimeters, etc). For
lower-resolution devices, and devices with unusual viewing distances, it is recom-
mended instead that the anchor unit be the pixel unit. For such devices it is recom-
mended that the pixel unit refer to the whole number of device pixels that best
approximates the reference pixel.

Note that if the anchor unit is the pixel unit, the physical units might not match their
physical measurements. Alternatively if the anchor unit is a physical unit, the pixel
unit might not map to a whole number of device pixels.

Note that this definition of the pixel unit and the physical units differs from previous
versions of CSS. In patrticular, in previous versions of CSS the pixel unit and the
physical units were not related by a fixed ratio: the physical units were always tied to
their physical measurements while the pixel unit would vary to most closely match
the reference pixel. (This change was made because too much existing content
relies on the assumption of 96dpi, and breaking that assumption breaks the content.)

The reference pixel is the visual angle of one pixel on a device with a pixel density
of 96dpi and a distance from the reader of an arm’s length. For a nominal arm’s
length of 28 inches, the visual angle is therefore about 0.0213 degrees. For reading
at arm’s length, 1px thus corresponds to about 0.26 mm (1/96 inch).

The image below illustrates the effect of viewing distance on the size of a refer-
ence pixel: a reading distance of 71 cm (28 inches) results in a reference pixel of
0.26 mm, while a reading distance of 3.5 m (12 feet) results in a reference pixel of
1.3 mm.

7 Jun 2011 17:58 65

Syntax and basic data types

1.3m

<} 0.26 mmt |

viewer
-
28 inches
71 cm
140 inches
3.5m

This second image illustrates the effect of a device’s resolution on the pixel unit:
an area of 1px by 1px is covered by a single dot in a low-resolution device (e.g. a
typical computer display), while the same area is covered by 16 dots in a higher

resolution device (such as a printer).

laserprint

Il monitor screen

1px
-

. =1 device pixel

Example(s):

hl { margin: 0.5in} /*inches */

h2 { line-height: 3cm} /* centimeters */
h3 { word-spacing: 4mm } /* millimeters */
h4 { font-size: 12pt} /* points */

h4 { font-size: 1pc} /* picas */

p {font-size: 12px} /* px*/

66 7 Jun 2011 17:58

Syntax and basic data types

4.3.3 Percentages

The format of a percentage value (denoted by <percentage> in this specification) is

afknumber>]immediately followed by '%'.

Percentage values are always relative to another value, for example a length.
Each property that allows percentages also defines the value to which the percent-
age refers. The value may be that of another property for the same element, a prop-
erty for an ancestor element, or a value of the formatting context (e.g., the width of a
[containing blocK] [p. 128]). When a percentage value is set for a property of the [roof
[p. 45] element and the percentage is defined as referring to the inherited value of
some property, the resultant value is the percentage times the [initial valug] [p. 31] of
that property.

Example(s):

Since child elements (generally) inherit the computed values| [p. 100] of their
parent, in the following example, the children of the P element will inherit a value of
12px for [line-height], not the percentage value (120%):

p { font-size: 10px }
p { line-height: 120% } /* 120% of 'font-size’ */

4.3.4 URLs and URIs

URI values (Uniform Resource Ildentifiers, see [RFC3986], which includes URLSs,
URNSs, etc) in this specification are denoted by <uri>. The functional notation used to
designate URIs in property values is "url()", as in:

Example(s):
body { background: url("http://www.example.com/pinkish.png") }

The format of a URI value is 'url(’ followed by optional [white space] [p. 53] followed
by an optional single quote (’) or double quote (") character followed by the URI
itself, followed by an optional single quote (') or double quote (") character followed
by optional white space followed by ’)’. The two quote characters must be the same.

Example(s):
An example without quotes:

li { list-style: url(http://www.example.com/redball.png) disc }

Some characters appearing in an unquoted URI, such as parentheses, white
space characters, single quotes (") and double quotes ("), must be escaped with a
backslash so that the resulting URI value is a URI token: "\(', \)'.

Depending on the type of URI, it might also be possible to write the above charac-
ters as URI-escapes (where "(" = %28, ")" = %29, etc.) as described in[[RFC3986].

7 Jun 2011 17:58 67

Syntax and basic data types

Note that COMMENT tokens cannot occur within other tokens: thus,
"url(/*x*/pic.png)" denotes the URI "/*x*/pic.png", not "pic.png".

In order to create modular style sheets that are not dependent on the absolute
location of a resource, authors may use relative URIs. Relative URIs (as defined in
are resolved to full URIs using a base URI. RFC 3986, section 5, defines
the normative algorithm for this process. For CSS style sheets, the base URI is that
of the style sheet, not that of the source document.

Example(s):

For example, suppose the following rule:

body { background: url("yellow") }

is located in a style sheet designated by the URI:
http://www.example.org/style/basic.css

The background of the source document’s BODY will be tiled with whatever image
is described by the resource designated by the URI

http://www.example.org/style/yellow

User agents may vary in how they handle invalid URIs or URIs that designate
unavailable or inapplicable resources.

4.3.5 Counters

Counters are denoted by case-sensitive identifiers (see the [counter-increment]and

properties). To refer to the value of a counter, the notation
‘counter(<identifier>)’ or 'counter(<identifier>, <’list-style-type’>)’, with optional white
space separating the tokens, is used. The default style is 'decimal’.

To refer to a sequence of nested counters of the same name, the notation is
‘counters(<identifier>, <string>)’ or 'counters(<identifier>, <string>, <'list-style-type’>)’
with optional white space separating the tokens.

See['Nested counters and scope’][p. 212] in the chapter on[generated content
[p. 203] for how user agents must determine the value or values of the counter. See
the definition of counter values of the [content] property for how it must convert these
values to a string.

In CSS 2.1, the values of counters can only be referred to from the [content] prop-
erty. Note that 'none’ is a possible <'list-style-type’>: 'counter(x, none)’ yields an
empty string.

Example(s):

Here is a style sheet that numbers paragraphs (p) for each chapter (h1). The para-
graphs are numbered with roman numerals, followed by a period and a space:

68 7 Jun 2011 17:58

Syntax and basic data types

p {counter-increment: par-num}
h1 {counter-reset: par-num}
p:before {content: counter(par-num, upper-roman) ". "}

4.3.6 Colors

A <color> is either a keyword or a numerical RGB specification.

The list of color keywords is: aqua, black, blue, fuchsia, gray, green, lime, maroon,
navy, olive, orange, purple, red, silver, teal, white, and yellow. These 17 colors have
the following values:

maroon #800000red #ff0000orange #ffA500yellow #ffff00olive #808000
purple #800080 fuchsia #ffOOff white #ffffff lime #00ffO0 green #008000
navy #000080 blue #0000ff aqua #00ffff teal #008080

black #000000 silver #c0c0c0 gray #808080

In addition to these color keywords, users may specify keywords that correspond
to the colors used by certain objects in the user’'s environment. Please consult the

section on [p. 298] for more information.
Example(s):

body {color: black; background: white }
h1 { color: maroon }
h2 { color: olive }

The RGB color model is used in humerical color specifications. These examples
all specify the same color:

Example(s):
em { color: #f00 } [* #rgb */
em { color: #ff0000 } [* #rrggbb */

em { color: rgh(255,0,0) }
em { color: rgh(100%, 0%, 0%) }

The format of an RGB value in hexadecimal notation is a '# immediately followed
by either three or six hexadecimal characters. The three-digit RGB notation (#rgb) is
converted into six-digit form (#rrggbb) by replicating digits, not by adding zeros. For
example, #fb0 expands to #ffbb00. This ensures that white (#ffffff) can be specified
with the short notation (#fff) and removes any dependencies on the color depth of
the display.

The format of an RGB value in the functional notation is 'rgb(’ followed by a
comma-separated list of three numerical values (either three integer values or three
percentage values) followed by ’)'. The integer value 255 corresponds to 100%, and
to F or FF in the hexadecimal notation: rgh(255,255,255) = rgb(100%,100%,100%) =
#FFF. [p. 53] characters are allowed around the numerical values.

All RGB colors are specified in the SRGB color space (see [SRGB]). User agents
may vary in the fidelity with which they represent these colors, but using sRGB
provides an unambiguous and objectively measurable definition of what the color
should be, which can be related to international standards (see [COLORIMETRY]).

7 Jun 2011 17:58 69

Syntax and basic data types

[Conforming user agents|[p. 47] may limit their color-displaying efforts to perform-
ing a gamma-correction on them. sRGB specifies a display gamma of 2.2 under
specified viewing conditions. User agents should adjust the colors given in CSS such
that, in combination with an output device’s "natural" display gamma, an effective
display gamma of 2.2 is produced. Note that only colors specified in CSS are
affected; e.g., images are expected to carry their own color information.

Values outside the device gamut should be clipped or mapped into the gamut
when the gamut is known: the red, green, and blue values must be changed to fall
within the range supported by the device. Users agents may perform higher quality
mapping of colors from one gamut to another. For a typical CRT monitor, whose
device gamut is the same as sRGB, the four rules below are equivalent:

Example(s):

em { color: rgh(255,0,0) } /* integer range 0 - 255 */

em { color: rgh(300,0,0) } [* clipped to rgb(255,0,0) */

em { color: rgh(255,-10,0) } /* clipped to rgb(255,0,0) */

em { color: rgh(110%, 0%, 0%) } /* clipped to rgh(100%,0%,0%) */

Other devices, such as printers, have different gamuts than sRGB; some colors
outside the 0..255 sRGB range will be representable (inside the device gamut), while
other colors inside the 0..255 sRGB range will be outside the device gamut and will
thus be mapped.

Note. Mapping or clipping of color values should be done to the actual device
gamut if known (which may be larger or smaller than 0..255).

4.3.7 Strings

Strings can either be written with double quotes or with single quotes. Double quotes
cannot occur inside double quotes, unless escaped (e.g., as '\’ or as '\22"). Analo-
gously for single quotes (e.g., "\" or "\27").

Example(s):

"this is a ’'string™
"this is a \"string\""
‘this is a "string™
‘this is a \'string\”

A string cannot directly contain a newline. To include a newline in a string, use an
escape representing the line feed character in 1ISO-10646 (U+000A), such as "\A" or
"\00000a". This character represents the generic notion of "newline" in CSS. See the

property for an example.

It is possible to break strings over several lines, for aesthetic or other reasons, but
in such a case the newline itself has to be escaped with a backslash (\). For
instance, the following two selectors are exactly the same:

Example(s):

70 7 Jun 2011 17:58

Syntax and basic data types

aftitle="a not s\
o very long title"] {/*...*/}
aftitle="a not so very long title"] {/*...*/}

4.3.8 Unsupported Values

If a UA does not support a particular value, it should ignore that value when parsing
style sheets, as if that value was anlfillegal value|[p. 61] . For example:

Example(s):

h3 {
display: inline;
display: run-in;

}

A UA that supports the 'run-in’ value for the 'display’ property will accept the first
display declaration and then "write over" that value with the second display declara-
tion. A UA that does not support the 'run-in’ value will process the first display decla-
ration and ignore the second display declaration.

4.4 CSS style sheet representation

A CSS style sheet is a sequence of characters from the Universal Character Set
(see [ISO10646]). For transmission and storage, these characters must be encoded
by a character encoding that supports the set of characters available in US-ASCII
(e.g., UTF-8, ISO 8859-x, SHIFT JIS, etc.). For a good introduction to character sets
and character encodings, please consult the HTML 4 specification ([HTML4], chapter
5). See also the XML 1.0 specification ((XML10], sections 2.2 and 4.3.3, and
Appendix F).

When a style sheet is embedded in another document, such as in the STYLE
element or "style" attribute of HTML, the style sheet shares the character encoding
of the whole document.

When a style sheet resides in a separate file, user agents must observe the follow-
ing priorities when determining a style sheet’s character encoding (from highest
priority to lowest):

1. An HTTP "charset" parameter in a "Content-Type" field (or similar parameters in
other protocols)

BOM and/or @charset (see below)

<link charset=""> or other metadata from the linking mechanism (if any)
charset of referring style sheet or document (if any)

Assume UTF-8

ar®DN

Authors using an @charset rule must place the rule at the very beginning of the
style sheet, preceded by no characters. (If a byte order mark is appropriate for the
encoding used, it may precede the @charset rule.)

7 Jun 2011 17:58 71

Syntax and basic data types

After "@charset", authors specify the name of a character encoding (in quotes).
For example:

@charset "ISO-8859-1";

@charset must be written literally, i.e., the 10 characters '@charset " (lowercase,
no backslash escapes), followed by the encoding name, followed by ™;'.

The name must be a charset name as described in the IANA registry. See
CHARSETS]for a complete list of charsets. Authors should use the charset names
marked as "preferred MIME name" in the IANA registry.

User agents must support at least the UTF-8 encoding.

User agents must ignore any @charset rule not at the beginning of the style sheet.
When user agents detect the character encoding using the BOM and/or the
@charset rule, they should follow the following rules:

® Except as specified in these rules, all @charset rules are ignored.

® The encoding is detected based on the stream of bytes that begins the style
sheet. The following table gives a set of possibilities for initial byte sequences
(written in hexadecimal). The first row that matches the beginning of the style
sheet gives the result of encoding detection based on the BOM and/or @charset
rule. If no rows match, the encoding cannot be detected based on the BOM
and/or @charset rule. The notation (...)* refers to repetition for which the best
match is the one that repeats as few times as possible. The bytes marked "XX"
are those used to determine the name of the encoding, by treating them, in the
order given, as a sequence of ASCII characters. Bytes marked "YY" are similar,
but need to be transcoded into ASCII as noted. User agents may ignore entries
in the table if they do not support any encodings relevant to the entry.

Initial Bytes Result
EF BB BF 40 63 68 61 72 73 65 74 20 22 as specified
(XX)* 22 3B P
EF BB BF UTE-8
40 63 68 61 72 73 65 74 20 22 (XX)* 22 .
as specified

3B

FE FF 00 40 00 63 00 68 00 61 00 72 00
73 00 65 00 74 00 20 00 22 (00 XX)* 00
22 00 3B

as specified (with BE endianness
if not specified)

00 40 00 63 00 68 00 61 00 72 00 73 00
65 00 74 00 20 00 22 (00 XX)* 00 22 00
3B

as specified (with BE endianness
if not specified)

72 7 Jun 2011 17:58

Syntax and basic data types

FF FE 40 00 63 00 68 00 61 00 72 00 73
00 65 00 74 00 20 00 22 00 (XX 00)* 22
00 3B 00

as specified (with LE endianness
if not specified)

40 00 63 00 68 00 61 00 72 00 73 00 65
00 74 00 20 00 22 00 (XX 00)* 22 00 3B
00

as specified (with LE endianness
if not specified)

00 00 FE FF 00 00 00 40 00 00 00 63 00
00 00 68 00 00 00 61 00 00 00 72 00 00
00 73 00 00 00 65 00 00 00 74 00 00 00
20 00 00 00 22 (00 00 00 XX)* 00 00 00

22 00 00 00 3B

as specified (with BE endianness
if not specified)

00 00 00 40 00 00 00 63 00 00 00 68 00
00 00 61 00 00 00 72 00 00 00 73 00 00
00 65 00 00 00 74 00 00 00 20 00 00 00
22 (00 00 00 XX)* 00 00 00 22 00 00 00
3B

as specified (with BE endianness
if not specified)

00 00 FF FE 00 00 40 00 00 00 63 00 00
00 68 00 00 00 61 00 00 00 72 00 00 00
73 00 00 00 65 00 00 00 74 00 00 00 20
00 00 00 22 00 (00 00 XX 00)* 00 00 22

00 00 00 3B 00

as specified (with 2143 endian-
ness if not specified)

00 00 40 00 00 00 63 00 00 00 68 00 00
00 61 00 00 00 72 00 00 00 73 00 00 00
65 00 00 00 74 00 00 00 20 00 00 00 22
00 (00 00 XX 00)* 00 00 22 00 00 00 3B
00

as specified (with 2143 endian-
ness if not specified)

FE FF 00 00 00 40 00 00 00 63 00 00 00
68 00 00 00 61 00 00 00 72 00 00 00 73

00 00 00 65 00 00 00 74 00 00 00 20 00
00 00 22 00 00 (00 XX 00 00)* 00 22 00

00 00 3B 00 00

as specified (with 3412 endian-
ness if not specified)

00 40 00 00 00 63 00 00 00 68 00 00 00
61 00 00 00 72 00 00 00 73 00 00 00 65
00 00 00 74 00 00 00 20 00 00 00 22 00
00 (00 XX 00 00)* 00 22 00 00 00 3B 00
00

as specified (with 3412 endian-
ness if not specified)

FF FE 00 00 40 00 00 00 63 00 00 00 68
00 00 00 61 00 00 00 72 00 00 00 73 00
00 00 65 00 00 00 74 00 00 00 20 00 00
00 22 00 00 00 (XX 00 00 00)* 22 00 00

00 3B 00 00 00

as specified (with LE endianness
if not specified)

7 Jun 2011 17:58

73

Syntax and basic data types

40 00 00 00 63 00 00 00 68 00 00 00 61
00 00 00 72 00 00 00 73 00 00 00 65 00
00 00 74 00 00 00 20 00 00 00 22 00 00
00 (XX 00 00 00)* 22 00 00 00 3B 00 00

as specified (with LE endianness

if not specified)

00

00 00 FE FF UTF-32-BE
FF FE 00 00 UTF-32-LE
00 00 FF FE UTF-32-2143
FE FF 00 00 UTF-32-3412
FE FF UTF-16-BE
FF FE UTF-16-LE

7C 83888199 A285A340 7F (YY)* 7F
SE

as specified, transcoded from
EBCDIC to ASCII

AE 83 88 81 99 A2 85 A340 FC (YY)*FC
SE

as specified, transcoded from
IBM1026 to ASCII

00 63 68 61 72 73 65 74 20 22 (YY)* 22
3B

as specified, transcoded from
GSM 03.38 to ASCII

analogous patterns

User agents may support addi-

tional, analogous, patterns if they

support encodings that are not
handled by the patterns here

® |f the encoding is detected based on one of the entries in the table above

marked "as specified", the user agent ignores the style sheet if it does not parse

an appropriate @charset rule at the beginning of the stream of characters
resulting from decoding in the chosen @charset. This ensures that:

O @charset rules should only function if they are in the encoding of the style

sheet,

O byte order marks are ignored only in encodings that support a byte order

mark, and

O encoding names cannot contain newlines.

User agents must ignore style sheets in unknown encodings.

4.4.1 Referring to characters not represented in a character

encoding

74

7 Jun 2011 17:58

Syntax and basic data types

A style sheet may have to refer to characters that cannot be represented in the
current character encoding. These characters must be written as[escaped] [p. 55]
references to ISO 10646 characters. These escapes serve the same purpose as
numeric character references in HTML or XML documents (see [HTML4], chapters 5
and 25).

The character escape mechanism should be used when only a few characters
must be represented this way. If most of a style sheet requires escaping, authors
should encode it with a more appropriate encoding (e.g., if the style sheet contains a
lot of Greek characters, authors might use "ISO-8859-7" or "UTF-8").

Intermediate processors using a different character encoding may translate these
escaped sequences into byte sequences of that encoding. Intermediate processors
must not, on the other hand, alter escape sequences that cancel the special
meaning of an ASCII character.

[Conforming user agents|[p. 47] must correctly map to ISO-10646 all characters in
any character encodings that they recognize (or they must behave as if they did).

For example, a style sheet transmitted as 1SO-8859-1 (Latin-1) cannot contain
Greek letters directly: "0O0000" (Greek: "kouros™) has to be written as
"\3BA\3BF\3C5\3C1\3BF\3C2".

Note. In HTML 4, numeric character references are interpreted in "style" attribute
values but not in the content of the STYLE element. Because of this asymmetry, we
recommend that authors use the CSS character escape mechanism rather than
numeric character references for both the "style" attribute and the STYLE element.
For example, we recommend:

...
rather than:

...

7 Jun 2011 17:58 75

76

Syntax and basic data types

7 Jun 2011 17:58

Selectors

5 Selectors
Contents
[5.1 Pattern matching| 77
[5.2 Selector syntax| 79
[5.2.1 Grouping| 79
[5.3 Universal selector] 80
[5.4 Type selectors| 80
[5.5 Descendant selectors| 80
[5.6 Child selectors| . 81
[5.7 Adjacent sibling selectors| 81
[5.8 Attribute selectors| .. 82
[5.8.1 Matching attributes and attrlbute valuesl 82
[5.8.2 Default attribute values in DTDs| 84
|5.8.3 Class selectors| 85
[5.9 ID selectors| . . 86
[5.10 Pseudo-elements and pseudo classesl 87
[5.11 Pseudo-classes| . 88
[5.11.1 :first-child pseudo- classl . 88
[5.11.2 The link pseudo-classes: :link and :visited| . . 89
[5.11.3 The dynamic pseudo-classes: :hover, :active, and :focus| . . 89
[5.11.4 The language pseudo-class: :lang| a1
[5.12 Pseudo-elements| .. Q2
[5.12.1 The :first-line pseudo- elemenﬂ Q2
[5.12.2 The :first-letter pseudo-element| Q4
[5.12.3 The :before and :after pseudo-elements| 97

5.1 Pattern matching

In CSS, pattern matching rules determine which style rules apply to elements in the
[document tree|[p. 45] . These patterns, called selectors, may range from simple
element names to rich contextual patterns. If all conditions in the pattern are true for

a certain element, the selector matches the element.

The case-sensitivity of document language element names in selectors depends
on the document language. For example, in HTML, element names are case-insen-

sitive, but in XML they are case-sensitive.

The following table summarizes CSS 2.1 selector syntax:

Pattern Meaning

Described in
section

7 Jun 2011 17:58

i

Selectors

Matches any element.

|[Universal selector|
[p. 80]

Matches any E element (i.e., an element

[Type selectors|

E of type E). [p. 80]
EF Matches any F element that is a descen- ||Descendant selec-|
dant of an E element. ftors] [p. 80]
EsF Matches any F element that is a child of ||Child selectors|
an element E. [p. 81]
- . Matches element E when E is the first [The -first-child |
E:first-child . .
child of its parent. 0. 88]
Matches element E if E is the source .
E:link anchor of a hyperlink of which the target is The link
o . - o Ipseudo-classes|
E.visited not yet visited (:link) or already visited 0. 89]
(:visited). P
E:active
E:hover Matches E during certain user actions. Ipseudo-classes|
E:focus [p. 89]
Matches element of type E if it is in | _
_ (human) language c (the document :m
E:lang(c) o . [pseudo-clasg|
language specifies how language is deter- 0. 91]
mined). P
E+F Matches any F element immediately |Adjacent selectors|
preceded by a sibling element E. [p. 81]
Effoo] Matches any E element with the "foo" |Attribute selectors|

attribute set (whatever the value).

[p. 82]

E[foo="warning"]

Matches any E element whose "foo"
attribute value is exactly equal to
"warning".

[Attribute selectors|
[p. 82]

E[foo~="warning"]

Matches any E element whose "foo"
attribute value is a list of space-separated
values, one of which is exactly equal to
"warning".

|Attribute selectors|
[p. 82]

E[lang|="en"]

Matches any E element whose "lang"
attribute has a hyphen-separated list of
values beginning (from the left) with "en".

|Attribute selectors|
[p. 82]

78

7 Jun 2011 17:58

Selectors

DIV warnin Language specific. (In HTML, the same as ||Class selectors|
' 9 DIV[class~="warning"].) [p. 85]
. Matches any E element with ID equal to
Exmyid i A [p- 86]

5.2 Selector syntax

A simple selector is either altype selector] [p. 80] or[universal selector] [p. 80] followed
immediately by zero or more [attribute selectors| [p. 82] , [ID selectord [p. 86] , or

[pseudo-classes| [p. 87] , in any order. The simple selector matches if all of its compo-
nents match.

Note: the terminology used here in CSS 2.1 is different from what is used in CSS3.
For example, a "simple selector" refers to a smaller part of a selector in CSS3 than in
CSS 2.1. See the CSS3 Selectors module [CSS3SEL]

A selector is a chain of one or more simple selectors separated by combinators.
Combinators are: white space, ">", and "+". White space may appear between a
combinator and the simple selectors around it.

The elements of the document tree that match a selector are called subjects of the
selector. A selector consisting of a single simple selector matches any element satis-
fying its requirements. Prepending a simple selector and combinator to a chain
imposes additional matching constraints, so the subjects of a selector are always a
subset of the elements matching the last simple selector.

One |pseudo-element| [p. 87] may be appended to the last simple selector in a
chain, in which case the style information applies to a subpart of each subject.

5.2.1 Grouping

When several selectors share the same declarations, they may be grouped into a
comma-separated list.

Example(s):

In this example, we condense three rules with identical declarations into one.
Thus,

h1 { font-family: sans-serif }
h2 { font-family: sans-serif }
h3 { font-family: sans-serif }

is equivalent to:

h1, h2, h3 { font-family: sans-serif }

CSS offers other "shorthand" mechanisms as well, including [multiple declarations]
[p. 59] and [shorthand properties|[p. 32] .

7 Jun 2011 17:58 79

Selectors

5.3 Universal selector

The universal selector, written "*", matches the name of any element type. It
matches any single element in the [document tree | [p. 45]

If the universal selector is not the only component of a|simple selector{[p. 79] , the
"' may be omitted. For example:

® *[lang=fr] and [lang=fr] are equivalent.
e *warning and.warning are equivalent.
e *#myid and #myid are equivalent.

5.4 Type selectors

A type selector matches the name of a document language element type. A type
selector matches every instance of the element type in the document tree.

Example(s):
The following rule matches all H1 elements in the document tree:

h1 { font-family: sans-serif }

5.5 Descendant selectors

At times, authors may want selectors to match an element that is the descendant of
another element in the document tree (e.g., "Match those EM elements that are
contained by an H1 element"). Descendant selectors express such a relationship in
a pattern. A descendant selector is made up of two or more selectors separated by
[p. 53] . A descendant selector of the form "A B " matches when an
element B is an arbitrary descendant of some [ancestor] [p. 45] element A.

Example(s):
For example, consider the following rules:

h1 { color: red }
em { color: red }

Although the intention of these rules is to add emphasis to text by changing its
color, the effect will be lost in a case such as:

<H1>This headline is very important</H1>

We address this case by supplementing the previous rules with a rule that sets the
text color to blue whenever an EM occurs anywhere within an H1:

h1 { color: red }
em { color: red }
h1l em { color: blue }

80 7 Jun 2011 17:58

Selectors

The third rule will match the EM in the following fragment:

<H1>This headline
is very important</H1>

Example(s):

The following selector:

div*p

matches a P element that is a grandchild or later descendant of a DIV element.
Note the white space on either side of the "*" is not part of the universal selector; the

white space is a combinator indicating that the DIV must be the ancestor of some
element, and that that element must be an ancestor of the P.

Example(s):

The selector in the following rule, which combines descendant and |attribute selec
fors|[p. 82] , matches any element that (1) has the "href" attribute set and (2) is
inside a P that is itself inside a DIV:

div p *[href]

5.6 Child selectors

A child selector matches when an element is the [p. 45] of some element. A
child selector is made up of two or more selectors separated by ">".

Example(s):

The following rule sets the style of all P elements that are children of BODY:
body > P { line-height: 1.3 }

Example(s):

The following example combines descendant selectors and child selectors:

div ol>li p

It matches a P element that is a descendant of an LI; the LI element must be the
child of an OL element; the OL element must be a descendant of a DIV. Notice that
the optional white space around the ">" combinator has been left out.

For information on selecting the first child of an element, please see the section on

the [:first-child|[p. 88] pseudo-class below.

5.7 Adjacent sibling selectors

Adjacent sibling selectors have the following syntax: E1 + E2, where E2 is the
subject of the selector. The selector matches if E1 and E2 share the same parent in
the document tree and E1 immediately precedes E2, ignoring non-element nodes
(such as text nodes and comments).

7 Jun 2011 17:58 81

Selectors

Example(s):

Thus, the following rule states that when a P element immediately follows a MATH
element, it should not be indented:

math + p { text-indent: 0 }

The next example reduces the vertical space separating an H1 and an H2 that
immediately follows it:

hl + h2 { margin-top: -5mm }

Example(s):

The following rule is similar to the one in the previous example, except that it adds
a class selector. Thus, special formatting only occurs when H1 has
class="opener"

hl.opener + h2 { margin-top: -5mm }

5.8 Attribute selectors

CSS 2.1 allows authors to specify rules that match elements which have certain
attributes defined in the source document.

5.8.1 Matching attributes and attribute values

Attribute selectors may match in four ways:

[att]
Match when the element sets the "att" attribute, whatever the value of the
attribute.

[att=val]
Match when the element’s "att" attribute value is exactly "val".

[att~=val]
Represents an element with the att attribute whose value is a white
space-separated list of words, one of which is exactly "val". If "val" contains
white space, it will never represent anything (since the words are separated by
spaces). If "val" is the empty string, it will never represent anything either.

[att|=val]
Represents an element with the att attribute, its value either being exactly "val"
or beginning with "val" immediately followed by "-" (U+002D). This is primarily
intended to allow language subcode matches (e.g., the hreflang attribute on
the a element in HTML) as described in BCP 47 or its successor. For
lang (or xml:lang) language subcode matching, please seefthe :lang]
[p. 91] .

Attribute values must be identifiers or strings. The case-sensitivity of attribute
names and values in selectors depends on the document language.

82 7 Jun 2011 17:58

Selectors

Example(s):

For example, the following attribute selector matches all H1 elements that specify
the "title" attribute, whatever its value:

hi[title] { color: blue; }
Example(s):

In the following example, the selector matches all SPAN elements whose "class"
attribute has exactly the value "example™:

span[class=example] { color: blue; }

Multiple attribute selectors can be used to refer to several attributes of an element,
or even several times to the same attribute.

Example(s):

Here, the selector matches all SPAN elements whose "hello” attribute has exactly
the value "Cleveland" and whose "goodbye" attribute has exactly the value "Colum-
bus":

span[hello="Cleveland"][goodbye="Columbus"] { color: blue; }
Example(s):

The following selectors illustrate the differences between "=" and "~=". The first
selector will match, for example, the value "copyright copyleft copyeditor” for the "rel"
attribute. The second selector will only match when the "href" attribute has the value
"http://www.w3.org/".

a[rel~="copyright"]
alhref="http://www.w3.0rg/"]

Example(s):

The following rule hides all elements for which the value of the "lang" attribute is
"fr* (i.e., the language is French).

*[lang=fr] { display : none }
Example(s):

The following rule will match for values of the "lang" attribute that begin with "en",
including "en", "en-US", and "en-cockney":

*[lang|="en"] { color : red }
Example(s):

Similarly, the following aural style sheet rules allow a script to be read aloud in
different voices for each role:

7 Jun 2011 17:58 83

Selectors

DIALOGUE[character=romeo]
{ voice-family: "Laurence Olivier", charles, male }

DIALOGUE[character=juliet]
{ voice-family: "Vivien Leigh", victoria, female }

5.8.2 Default attribute values in DTDs

Matching takes place on attribute values in the document tree. Default attribute
values may be defined in a DTD or elsewhere, but cannot always be selected by
attribute selectors. Style sheets should be designed so that they work even if the
default values are not included in the document tree.

More precisely, a UA may, but is not required to, read an "external subset" of the
DTD but is required to look for default attribute values in the document’s "internal
subset." (See [XML10] for definitions of these subsets.) Depending on the UA, a
default attribute value defined in the external subset of the DTD might or might not
appear in the document tree.

A UA that recognizes an XML namespace [XMLNAMESPACES] may, but is not
required to, use its knowledge of that namespace to treat default attribute values as
if they were present in the document. (E.g., an XHTML UA is not required to use its
built-in knowledge of the XHTML DTD.)

Note that, typically, implementations choose to ignore external subsets.

Example(s):
Example:

For example, consider an element EXAMPLE with an attribute "notation” that has
a default value of "decimal”. The DTD fragment might be

<IATTLIST EXAMPLE notation (decimal,octal) "decimal">

If the style sheet contains the rules

EXAMPLE[notation=decimal] { /*... default property settings ...*/ }
EXAMPLE[notation=octal] {/*... other settings...*/ }

the first rule might not match elements whose "notation” attribute is set by default,
I.e., not set explicitly. To catch all cases, the attribute selector for the default value
must be dropped:

EXAMPLE { I*... default property settings ...*/ }
EXAMPLE[notation=octal] {/*... other settings...*/ }

Here, because the selector EXAMPLE[notation=octal] iS more
[p. 104] than the type selector alone, the style declarations in the second rule will
override those in the first for elements that have a "notation" attribute value of "octal".
Care has to be taken that all property declarations that are to apply only to the
default case are overridden in the non-default cases’ style rules.

84 7 Jun 2011 17:58

Selectors

5.8.3 Class selectors

Working with HTML, authors may use the period (.) notation as an alternative to the
~= notation when representing the class attribute. Thus, for HTML, div.value

and div[class~=value] have the same meaning. The attribute value must imme-
diately follow the "period" (.). UAs may apply selectors using the period (.) notation
in XML documents if the UA has namespace specific knowledge that allows it to
determine which attribute is the "class" attribute for the respective namespace. One
such example of namespace specific knowledge is the prose in the specification for
a particular namespace (e.g., SVG 1.1[[SVG11] describes the[SVG "class" attribute
[p. 2?] and how a UA should interpret it, and similarly MathML 3.0[MATH30]
describes the [MathML "class™ attribute] [p. ??] .)

Example(s):

For example, we can assign style information to all elements with
class~="pastoral" as follows:

* pastoral { color: green } /* all elements with class~=pastoral */
or just
.pastoral { color: green } /* all elements with class~=pastoral */

The following assigns style only to H1 elements with class~="pastoral"

H1.pastoral { color: green } /* H1 elements with class~=pastoral */

Given these rules, the first H1 instance below would not have green text, while the
second would:

<H1>Not green</H1>
<H1 class="pastoral">Very green</H1>

To match a subset of "class" values, each value must be preceded by a ".".
Example(s):

For example, the following rule matches any P element whose "class" attribute has
been assigned a list of space-separated values that includes "pastoral” and "marine":

p.marine.pastoral { color: green }

This rule matches when class="pastoral blue aqua marine" but does not
match for class="pastoral blue"

Note. CSS gives so much power to the "class" attribute, that authors could
conceivably design their own "document language" based on elements with almost
no associated presentation (such as DIV and SPAN in HTML) and assigning style
information through the "class" attribute. Authors should avoid this practice since the
structural elements of a document language often have recognized and accepted
meanings and author-defined classes may not.

7 Jun 2011 17:58 85

Selectors

Note: If an element has multiple class attributes, their values must be concate-
nated with spaces between the values before searching for the class. As of this time
the working group is not aware of any manner in which this situation can be reached,
however, so this behavior is explicitly non-normative in this specification.

5.9 ID selectors

Document languages may contain attributes that are declared to be of type ID. What
makes attributes of type ID special is that no two such attributes can have the same
value; whatever the document language, an ID attribute can be used to uniquely
identify its element. In HTML all ID attributes are named "id"; XML applications may
name ID attributes differently, but the same restriction applies.

The ID attribute of a document language allows authors to assign an identifier to
one element instance in the document tree. CSS ID selectors match an element
instance based on its identifier. A CSS ID selector contains a "#" immediately
followed by the ID value, which must be an identifier.

Note that CSS does not specify how a UA knows the ID attribute of an element.
The UA may, e.g., read a document’s DTD, have the information hard-coded or ask
the user.

Example(s):

The following ID selector matches the H1 element whose ID attribute has the
value "chapterl":

hl#chapterl { text-align: center }

In the following example, the style rule matches the element that has the ID value
"z98y". The rule will thus match for the P element:

<HEAD>
<TITLE>Match P</TITLE>
<STYLE type="text/css">
*#z98y { letter-spacing: 0.3em }
</STYLE>
</HEAD>
<BODY>
<P id=z98y>Wide text</P>
</BODY>

In the next example, however, the style rule will only match an H1 element that
has an ID value of "z98y". The rule will not match the P element in this example:

<HEAD>
<TITLE>Match H1 only</TITLE>
<STYLE type="text/css">
H1#z98y { letter-spacing: 0.5em }
</STYLE>
</HEAD>
<BODY>
<P id=z98y>Wide text</P>
</BODY>

86 7 Jun 2011 17:58

Selectors

ID selectors have a higher specificity than attribute selectors. For example, in
HTML, the selector #p123 is more specific than [id=p123] in terms of the [cascade]

[p. 99].

Note. In XML 1.0[[XML1Q], the information about which attribute contains an
element’s IDs is contained in a DTD. When parsing XML, UAs do not always read
the DTD, and thus may not know what the ID of an element is. If a style sheet
designer knows or suspects that this will be the case, he should use normal attribute
selectors instead: [nane=p371] instead of #p371. However, the cascading order of
normal attribute selectors is different from ID selectors. It may be necessary to add
an "limportant" priority to the declarations: [nane=p371] {color: red !

i mportant}.

If an element has multiple ID attributes, all of them must be treated as IDs for that
element for the purposes of the ID selector. Such a situation could be reached using
mixtures of xml:id [XMLID], DOM3 Core [DOM-LEVEL-3-CORE], XML DTDs
[XML10] and namespace-specific knowledge.

5.10 Pseudo-elements and pseudo-classes

In CSS 2.1, style is normally attached to an element based on its position in the
[document tree| [p. 45] . This simple model is sufficient for many cases, but some
common publishing scenarios may not be possible due to the structure of the [docu]

[ment tre€] [p. 45] . For instance, in HTML 4 (see[[HTML4]), no element refers to the

first line of a paragraph, and therefore no simple CSS selector may refer to it.

CSS introduces the concepts of pseudo-elements and pseudo-classes to permit
formatting based on information that lies outside the document tree.

® Pseudo-elements create abstractions about the document tree beyond those
specified by the document language. For instance, document languages do not
offer mechanisms to access the first letter or first line of an element’s content.
CSS pseudo-elements allow style sheet designers to refer to this otherwise
inaccessible information. Pseudo-elements may also provide style sheet design-
ers a way to assign style to content that does not exist in the source document
(e.g., the[before and :after [p. 203] pseudo-elements give access to generated
content).

® Pseudo-classes classify elements on characteristics other than their name,
attributes or content; in principle characteristics that cannot be deduced from the
document tree. Pseudo-classes may be dynamic, in the sense that an element
may acquire or lose a pseudo-class while a user interacts with the document.
The exceptions are [:first-child] [p. 88] , which can be deduced from the docu-
ment tree, and[:Tang()] [p. 91] , which can be deduced from the document tree in
some cases.

Neither pseudo-elements nor pseudo-classes appear in the document source or
document tree.

7 Jun 2011 17:58 87

Selectors

Pseudo-classes are allowed anywhere in selectors while pseudo-elements may
only be appended after the last simple selector of the selector.

Pseudo-element and pseudo-class hames are case-insensitive.

Some pseudo-classes are mutually exclusive, while others can be applied simulta-
neously to the same element. In case of conflicting rules, the normal|cascading order
[p. 103] determines the outcome.

5.11 Pseudo-classes

5.11.1 :first-child pseudo-class

The :first-child pseudo-class matches an element that is the first child element of
some other element.

Example(s):

In the following example, the selector matches any P element that is the first child
of a DIV element. The rule suppresses indentation for the first paragraph of a DIV:

div > p:first-child { text-indent: 0 }
This selector would match the P inside the DIV of the following fragment:

<P> The last P before the note.
<DIV class="note">

<P> The first P inside the note.
</DIV>

but would not match the second P in the following fragment:

<P> The last P before the note.
<DIV class="note">
<H2>Note</H2>
<P> The first P inside the note.
</DIV>

Example(s):

The following rule sets the font weight to 'bold’ for any EM element that is some
descendant of a P element that is a first child:

p:first-child em { font-weight : bold }

Note that since [anonymous] [p. 132] boxes are not part of the document tree, they
are not counted when calculating the first child.

For example, the EM in:

<P>abc default

is the first child of the P.

88 7 Jun 2011 17:58

Selectors

The following two selectors are equivalent:
* > afirst-child /* A is first child of any element */

a:first-child /* Same */

5.11.2 The link pseudo-classes: :link and :visited

User agents commonly display unvisited links differently from previously visited
ones. CSS provides the pseudo-classes ":link’ and ":visited’ to distinguish them:

® The :link pseudo-class applies for links that have not yet been visited.

® The :visited pseudo-class applies once the link has been visited by the user.
UAs may return a visited link to the (unvisited) ":link’ state at some point.

The two states are mutually exclusive.

The document language determines which elements are hyperlink source
anchors. For example, in HTMLA4, the link pseudo-classes apply to A elements with
an "href" attribute. Thus, the following two CSS 2.1 declarations have similar effect:

a:link { color: red }
:link { color: red }

Example(s):
If the following link:

external link

has been visited, this rule:

a.external:visited { color: blue }

will cause it to be blue.

Note. It is possible for style sheet authors to abuse the :link and :visited
pseudo-classes to determine which sites a user has visited without the user’s
consent.

UAs may therefore treat all links as unvisited links, or implement other measures
to preserve the user’s privacy while rendering visited and unvisited links differently.
See for more information about handling privacy.

5.11.3 The dynamic pseudo-classes: :hover, :active, and
-focus

Interactive user agents sometimes change the rendering in response to user actions.
CSS provides three pseudo-classes for common cases:

® The :hover pseudo-class applies while the user designates an element (with
some pointing device), but does not activate it. For example, a visual user agent
could apply this pseudo-class when the cursor (mouse pointer) hovers over a

7 Jun 2011 17:58 89

Selectors

box generated by the element. User agents not supporting [interactive media
[p. 110] do not have to support this pseudo-class. Some conforming user agents
supporting [interactive medial [p. 110] may not be able to support this
pseudo-class (e.g., a pen device).

® The :active pseudo-class applies while an element is being activated by the
user. For example, between the times the user presses the mouse button and
releases it.

® The :focus pseudo-class applies while an element has the focus (accepts
keyboard events or other forms of text input).

An element may match several pseudo-classes at the same time.

CSS does not define which elements may be in the above states, or how the
states are entered and left. Scripting may change whether elements react to user
events or not, and different devices and UAs may have different ways of pointing to,
or activating elements.

CSS 2.1 does not define if the parent of an element that is ":active’ or ":hover’ is
also in that state.

User agents are not required to reflow a currently displayed document due to
pseudo-class transitions. For instance, a style sheet may specify that the [font-size]]
of an :active link should be larger than that of an inactive link, but since this may
cause letters to change position when the reader selects the link, a UA may ignore
the corresponding style rule.

Example(s):

a:link {color:red} /*unvisited links */
a:visited { color: blue } /* visited links */
a:hover {color: yellow } /* user hovers */
a:active {color: lime} /*active links */

Note that the A:hover must be placed after the A:link and A:visited rules, since
otherwise the cascading rules will hide the [color] property of the A:hover rule. Simi-
larly, because A:active is placed after A:hover, the active color (lime) will apply when
the user both activates and hovers over the A element.

Example(s):

An example of combining dynamic pseudo-classes:

a:focus { background: yellow }
a:focus:hover { background: white }

The last selector matches A elements that are in pseudo-class :focus and in
pseudo-class :hover.

For information about the presentation of focus outlines, please consult the section
on|dynamic focus outlines|[p. 300] .

90 7 Jun 2011 17:58

Selectors

Note. In CSS1, the ":active’ pseudo-class was mutually exclusive with ":link" and
".visited’. That is no longer the case. An element can be both ":visited’ and ’:active’
(or link’ and ":active’) and the normal cascading rules determine which style decla-
rations apply.

Note. Also note that in CSS1, the ":active’ pseudo-class only applied to links.

5.11.4 The language pseudo-class: :lang

If the document language specifies how the human language of an element is deter-
mined, it is possible to write selectors in CSS that match an element based on its
language. For example, in HTML[[HTMLA4]} the language is determined by a combi-
nation of the "lang" attribute, the META element, and possibly by information from
the protocol (such as HTTP headers). XML uses an attribute called xml:lang, and
there may be other document language-specific methods for determining the
language.

The pseudo-class ":lang(C)’ matches if the element is in language C. Whether
there is a match is based solely on the identifier C being either equal to, or a
hyphen-separated substring of, the element’s language value, in the same way as if
performed by the[[=][p. 82] operator. The matching of C against the element’s
language value is performed case-insensitively for characters within the ASCII
range. The identifier C does not have to be a valid language name.

C must not be empty.

Note: It is recommended that documents and protocols indicate language using
codes from BCP 47[[BCP47] or its successor, and by means of "xml:lang" attributes
in the case of XML-based documents[[XML10]} See['FAQ: Two-letter or three-letter]
[[anguage codes.[p. ?7?]

Example(s):

The following rules set the quotation marks for an HTML document that is either in
Canadian French or German:

html:lang(fr-ca) { quotes: '« "' »' }
html:lang(de) { quotes: ’»’ '«’ \2039’ \203A’ }
lang(fr) > Q { quotes: '« ' ' »' }

:lang(de) > Q { quotes: '»" '«’ \2039’ \203A' }

The second pair of rules actually set the [quotes] property on Q elements accord-
ing to the language of its parent. This is done because the choice of quote marks is
typically based on the language of the element around the quote, not the quote itself:
like this piece of French “a I'improviste” in the middle of an English text uses the
English quotation marks.

Note the difference between [lang|=xx] and :lang(xx). In this HTML example, only
the BODY matches [lang|=fr] (because it has a LANG attribute) but both the BODY
and the P match :lang(fr) (because both are in French).

7 Jun 2011 17:58 91

Selectors

<body lang=fr>
<p>Je suis Francais.</p>
</body>

5.12 Pseudo-elements
Pseudo-elements behave just like real elements in CSS with the exceptions
described below and [p. 203]

Note that the sections below do not define the exact rendering of "first-line’ and
"first-letter’ in all cases. A future level of CSS may define them more precisely.

5.12.1 The :first-line pseudo-element

The :first-line pseudo-element applies special styles to the contents of the first
formatted line of a paragraph. For instance:

p:first-line { text-transform: uppercase }

The above rule means "change the letters of the first line of every paragraph to
uppercase". However, the selector "P:first-line" does not match any real HTML
element. It does match a pseudo-element that|conforming user agents| [p. 47] will
insert at the beginning of every paragraph.

Note that the length of the first line depends on a number of factors, including the
width of the page, the font size, etc. Thus, an ordinary HTML paragraph such as:

<P>This is a somewhat long HTML
paragraph that will be broken into several
lines. The first line will be identified

by a fictional tag sequence. The other lines
will be treated as ordinary lines in the
paragraph.</P>

the lines of which happen to be broken as follows:

THIS IS A SOMEWHAT LONG HTML PARAGRAPH THAT
will be broken into several lines. The first

line will be identified by a fictional tag

sequence. The other lines will be treated as

ordinary lines in the paragraph.

might be "rewritten" by user agents to include the fictional tag sequence for
first-line. This fictional tag sequence helps to show how properties are inherited.

<P><P: first-1|ine>Thisis a somewhat long HTML

paragraph that </ P:first-1ine>will be broken into several
lines. The first line will be identified

by a fictional tag sequence. The other lines

will be treated as ordinary lines in the

paragraph.</P>

92 7 Jun 2011 17:58

Selectors

If a pseudo-element breaks up a real element, the desired effect can often be
described by a fictional tag sequence that closes and then re-opens the element.
Thus, if we mark up the previous paragraph with a SPAN element:

<P> This is a somewhat long HTML
paragraph that will be broken into several

lines. </ SPAN> The first line will be identified

by a fictional tag sequence. The other lines

will be treated as ordinary lines in the

paragraph.</P>

the user agent could simulate start and end tags for SPAN when inserting the
fictional tag sequence for :first-line.

<P><P:first-line> Thisis a
somewhat long HTML
paragraph that will </ SPAN></P-first-line> be

broken into several

lines. </ SPAN> The first line will be identified
by a fictional tag sequence. The other lines

will be treated as ordinary lines in the
paragraph.</P>

The :first-line pseudo-element can only be attached to a|block container element,|
[p. 129]

The "first formatted line" of an element may occur inside a block-level descendant
in the same flow (i.e., a block-level descendant that is not positioned and not a float).
E.g., the first line of the DIV in <DIV><P>This line...</P></DIV> is the first
line of the P (assuming that both P and DIV are block-level).

The first line of a table-cell or inline-block cannot be the first formatted line of an
ancestor element. Thus, in <DIV><P STYLE="display:
inline-block">Hello
Goodbye</P> etcetera</DIV> the first formatted
line of the DIV is not the line "Hello".

Note that the first line of the P in this fragment: <p>
First... does not
contain any letters (assuming the default style for BR in HTML 4). The word "First" is
not on the first formatted line.

A UA should act as if the fictional start tags of the first-line pseudo-elements were
nested just inside the innermost enclosing block-level element. (Since CSS1 and
CSS2 were silent on this case, authors should not rely on this behavior.) Here is an
example. The fictional tag sequence for

<DIV>

<P>First paragraph</P>

<P>Second paragraph</P>
</DIV>

is

7 Jun 2011 17:58 93

Selectors

<DIV>
<P><DIV-first-line><P:first-line>First paragraph</P:first-line></DIV-first-line></P>
<P><P"first-line>Second paragraph</P:first-line></P>

</DIV>

The first-line pseudo-element is similar to an inline-level element, but with certain
restrictions. The following properties apply to a :first-line pseudo-element: [font prop
lerties]| [p. 241][color property]| [p. 233] [background properties)] [p. 234]
[word-spacing’][Tetter-spacing’ J[text-decoration’ |[text-transform’ | and[Tine-height]

UAs may apply other properties as well.

5.12.2 The :first-letter pseudo-element

The :first-letter pseudo-element must select the first letter of the first line of a block, if
it is not preceded by any other content (such as images or inline tables) on its line.
The first-letter pseudo-element may be used for "initial caps" and "drop caps", which
are common typographical effects. This type of initial letter is similar to an inline-level
element if its[float] property is 'none’, otherwise it is similar to a floated element.

These are the properties that apply to :first-letter pseudo-elements: [font properties|
[p. 241][text-decoration’|[text-transform’[letter-spacing’ J[word-spacing] (when
appropriate), [line-height’ |[float |[vertical-align] (only if 'float’ is 'none’), [margin pro
lerties)] [p. 115][padding properties][p. 119][oorder properties] [p. 120][color property]

[p. 233] [background properties] [p. 234] UAs may apply other properties as well. To
allow UAs to render a typographically correct drop cap or initial cap, the UA may

choose a line-height, width and height based on the shape of the letter, unlike for
normal elements. CSS3 is expected to have specific properties that apply to
first-letter.

This example shows a possible rendering of an initial cap. Note that the
'line-height’ that is inherited by the first-letter pseudo-element is 1.1, but the UA in
this example has computed the height of the first letter differently, so that it does not
cause any unnecessary space between the first two lines. Also note that the fictional
start tag of the first letter is inside the SPAN, and thus the font weight of the first
letter is normal, not bold as the SPAN:

p {line-height: 1.1}
p:first-letter { font-size: 3em; font-weight: normal }
span { font-weight: bold }

<p>Het hemelsche gerecht heeft zich ten lange lesten

Erbarremt over my en mijn benaeuwde vesten

En arme burgery, en op mijn volcx gebed

En dagelix geschrey de bange stad ontzet.

Ht‘l hemelsche gerecht heeft zich ten lange lesten
Erbarremt over my en mijn benacuwde vesten

En arme burgery, en op mijn volex gebed

En dagelix geschrey de bange stad ontzet.

94 7 Jun 2011 17:58

Selectors

The following CSS 2.1 will make a drop cap initial letter span about two lines:

<IDOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN">
<HTML>
<HEAD>
<TITLE>Drop cap initial letter</TITLE>
<STYLE type="text/css">
P { font-size: 12pt; line-height: 1.2 }
P-first-letter { font-size: 200%; font-style: italic;
font-weight: bold; float: left }
SPAN { text-transform: uppercase }
</STYLE>
</HEAD>
<BODY>
<P>The first few words of an article
in The Economist.</P>
</BODY>
</HTML>

This example might be formatted as follows:

HE FIRST few

words of an
article in the
Economist

The fictional tag sequence is:

<pP>

<P:first-letter>

T

</P:first-letter>he first

few words of an article in the Economist.
</P>

Note that the :first-letter pseudo-element tags abut the content (i.e., the initial char-
acter), while the :first-line pseudo-element start tag is inserted right after the start tag

of the block element.

In order to achieve traditional drop caps formatting, user agents may approximate

font sizes, for example to align baselines. Also, the glyph outline may be taken into

account when formatting.

Punctuation (i.e, characters defined in Unicode [UNICODE]|in the "open" (Ps),

"close” (Pe), "initial" (Pi). "final" (Pf) and "other" (Po) punctuation classes), that
precedes or follows the first letter should be included, as in:

4“ bird in
the hand
is worth

two in the bush,"

says an old proverb.

7 Jun 2011 17:58

95

Selectors

The "first-letter’ also applies if the first letter is in fact a digit, e.g., the "6" in "67
million dollars is a lot of money."

The :first-letter pseudo-element applies to [block container elements|[p. 129]

The :first-letter pseudo-element can be used with all such elements that contain
text, or that have a descendant in the same flow that contains text. A UA should act
as if the fictional start tag of the first-letter pseudo-element is just before the first text
of the element, even if that first text is in a descendant.

Example(s):
Here is an example. The fictional tag sequence for this HTML fragment:

<div>
<p>The first text.

is:
<div>

<p><div:first-letter><p:first-letter>T</...></...>he first text.

The first letter of a table-cell or inline-block cannot be the first letter of an ancestor
element. Thus, in <DIV><P STYLE="display:
inline-block">Hello
Goodbye</P> etcetera</DIV> the first letter of
the DIV is not the letter "H". In fact, the DIV does not have a first letter.

The first letter must occur on theffirst formatted line | [p. 93] For example, in this
fragment: <p>
First... the first line does not contain any letters and
"first-letter’ does not match anything (assuming the default style for BR in HTML 4).
In particular, it does not match the "F" of "First.”

If an element is allist item| [p. 214] ('display: list-item’), the *first-letter’ applies to
the first letter in the principal box after the marker. UAs may ignore ’first-letter’ on list
items with ’list-style-position: inside’. If an element has ":before’ or ":after’ content, the
"first-letter applies to the first letter of the element including that content.

E.g., after the rule 'p:before {content: "Note: "}, the selector 'p:first-letter’ matches
the "N" of "Note".

Some languages may have specific rules about how to treat certain letter combi-
nations. In Dutch, for example, if the letter combination "ij" appears at the beginning
of a word, both letters should be considered within the :first-letter pseudo-element.

If the letters that would form the first-letter are not in the same element, such as
"T"in <p>'T... ,the UA may create a first-letter pseudo-element from one of

the elements, both elements, or simply not create a pseudo-element.

Similarly, if the first letter(s) of the block are not at the start of the line (for example
due to bidirectional reordering), then the UA need not create the pseudo-element(s).

Example(s):

96 7 Jun 2011 17:58

Selectors

The following example illustrates how overlapping pseudo-elements may interact.
The first letter of each P element will be green with a font size of '24pt’. The rest of
the first formatted line will be 'blue’ while the rest of the paragraph will be ‘red’.

p { color: red; font-size: 12pt }
p:first-letter { color: green; font-size: 200% }
p:first-line { color: blue }

<P>Some text that ends up on two lines</P>

Assuming that a line break will occur before the word "ends", the fictional tag
sequence for this fragment might be:

<pP>

<P:first-line>

<P-first-letter>

S
</P:first-letter>ome text that
</P:first-line>

ends up on two lines

</P>

Note that the :first-letter element is inside the :first-line element. Properties set on
first-line are inherited by :first-letter, but are overridden if the same property is set on

first-letter.

5.12.3 The :before and :after pseudo-elements

The ":before’ and ":after’ pseudo-elements can be used to insert generated content
before or after an element’s content. They are explained in the section on[generated]

[p. 203]
Example(s):
hl:before {content: counter(chapno, upper-roman) ". "}

When the :first-letter and :first-line pseudo-elements are applied to an element
having content generated using :before and :after, they apply to the first letter or line

of the element including the generated content.
Example(s):

p.special:before {content: "Special! "}
p.special:first-letter {color: #ffd800}

This will render the "S" of "Special!" in gold.

97

7 Jun 2011 17:58

98

Selectors

7 Jun 2011 17:58

Assigning property values, Cascading, and Inheritance

6 Assigning property values, Cascading, and
Inheritance

Contents
[6.1 Specified, computed, and actualvalues| 99
[6.1.1 Specifiedvalues| 929
6.1.2 Computed values|100
6.1.3Usedvaluesf100
6.1.4 Actualvalues|]100
6.2 Inheritance|100
[6.2.1 The 'inherit' value10
6.3 The @import rule) 0 4
|6.4 The cascade] S 0 24
6.4.1 Cascadingorderqy103
[6.4.2 limportantrules,104
|6.4.3 Calculating a selector’s specificity] 104
[6.4.4 Precedence of non-CSS presentationalhintsf 105

6.1 Specified, computed, and actual values

Once a user agent has parsed a document and constructed a|document treg| [p. 45],
it must assign, for every element in the tree, a value to every property that applies to

the target|media type] [p. 107] .

The final value of a property is the result of a four-step calculation: the value is
determined through specification (the "specified value"), then resolved into a value
that is used for inheritance (the "computed value"), then converted into an absolute
value if necessary (the "used value"), and finally transformed according to the limita-
tions of the local environment (the "actual value").

6.1.1 Specified values

User agents must first assign a specified value to each property based on the follow-
ing mechanisms (in order of precedence):

1. If the[cascade][p. 102] results in a value, use it.

2. Otherwise, if the property is[inherited| [p. 100] and the element is not the root of
the document tree, use the computed value of the parent element.

3. Otherwise use the property’s initial value. The initial value of each property is
indicated in the property’s definition.

7 Jun 2011 17:58 99

Assigning property values, Cascading, and Inheritance

6.1.2 Computed values

Specified values are resolved to computed values during the cascade; for example
URIs are made absolute and 'em’ and 'ex’ units are computed to pixel or absolute
lengths. Computing a value never requires the user agent to render the document.

The computed value of URIs that the UA cannot resolve to absolute URIs is the
specified value.

The computed value of a property is determined as specified by the Computed
Value line in the definition of the property. See the section on[inheritance] [p. 100] for
the definition of computed values when the specified value is 'inherit’.

The computed value exists even when the property does not apply, as defined by
the [p. 31] line. However, some properties may define the computed
value of a property for an element to depend on whether the property applies to that
element.

6.1.3 Used values

Computed values are processed as far as possible without formatting the document.
Some values, however, can only be determined when the document is being laid
out. For example, if the width of an element is set to be a certain percentage of its
containing block, the width cannot be determined until the width of the containing
block has been determined. The used value is the result of taking the computed
value and resolving any remaining dependencies into an absolute value.

6.1.4 Actual values

A used value is in principle the value used for rendering, but a user agent may not
be able to make use of the value in a given environment. For example, a user agent
may only be able to render borders with integer pixel widths and may therefore have
to approximate the computed width, or the user agent may be forced to use only
black and white shades instead of full color. The actual value is the used value after
any approximations have been applied.

6.2 Inheritance

Some values are inherited by the children of an element in the |[document treg| [p. 45]

, as described [above] [p. 99] . Each property [defines| [p. 29] whether it is inherited or
not.

Suppose there is an H1 element with an emphasizing element (EM) inside:

<H1>The headline is important!</H1>

If no color has been assigned to the EM element, the emphasized "is" will inherit
the color of the parent element, so if H1 has the color blue, the EM element will like-
wise be in blue.

100 7 Jun 2011 17:58

Assigning property values, Cascading, and Inheritance

When inheritance occurs, elements inherit computed values. The computed value
from the parent element becomes both the specified value and the computed value
on the child.

Example(s):
For example, given the following style sheet:

body { font-size: 10pt }
h1 { font-size: 130% }

and this document fragment:

<BODY>
<H1>A large heading</H1>
</BODY>

the ‘font-size’ property for the H1 element will have the computed value '13pt’
(130% times 10pt, the parent’s value). Since the computed value of [font-size] is
inherited, the EM element will have the computed value '13pt’ as well. If the user
agent does not have the 13pt font available, the actual value of[font-size] for both H1
and EM might be, for example, '12pt’.

Note that inheritance follows the document tree and is not intercepted by [anony
[p. 129]

6.2.1 The 'inherit’ value

Each property may also have a cascaded value of "inherit’, which means that, for a
given element, the property takes the same specified value as the property for the
element’s parent. The ’inherit’ value can be used to enforce inheritance of values,
and it can also be used on properties that are not normally inherited.

If the inherit’ value is set on the root element, the property is assigned its initial
value.

Example(s):

In the example below, the[color]and[background’|properties are set on the BODY
element. On all other elements, the 'color’ value will be inherited and the background
will be transparent. If these rules are part of the user’s style sheet, black text on a
white background will be enforced throughout the document.

body {
color: black limportant;
background: white !important;

}
“{

color: inherit limportant;
background: transparent limportant;

}

7 Jun 2011 17:58 101

Assigning property values, Cascading, and Inheritance

6.3 The @import rule

The '@import’ rule allows users to import style rules from other style sheets. In
CSS 2.1, any @import rules must precede all other rules (except the @charset rule,
if present). See the|section on parsing|[p. 57] for when user agents must ignore
@import rules. The '@import’ keyword must be followed by the URI of the style
sheet to include. A string is also allowed; it will be interpreted as if it had url(...)
around it.

Example(s):
The following lines are equivalent in meaning and illustrate both '@import’
syntaxes (one with "url()" and one with a bare string):

@import "mystyle.css";
@import url("mystyle.css");

So that user agents can avoid retrieving resources for unsupported[media types|
[p. 107], authors may specify media-dependent @import rules. These conditional
imports specify comma-separated media types after the URI.

Example(s):
The following rules illustrate how @import rules can be made media-dependent:

@import url("fineprint.css") print;
@import url("bluish.css") projection, tv;

In the absence of any media types, the import is unconditional. Specifying 'all’ for
the medium has the same effect. The import only takes effect if the target medium
matches the media list.

A target medium matches a media list if one of the items in the media list is the
target medium or 'all’.

Note that Media Queries [MEDIAQ] extends the syntax of media lists and the defi-
nition of matching.

When the same style sheet is imported or linked to a document in multiple places,
user agents must process (or act as though they do) each link as though the link
were to a separate style sheet.

6.4 The cascade

Style sheets may have three different origins: author, user, and user agent.

® Author . The author specifies style sheets for a source document according to
the conventions of the document language. For instance, in HTML, style sheets
may be included in the document or linked externally.

® User: The user may be able to specify style information for a particular docu-
ment. For example, the user may specify a file that contains a style sheet or the
user agent may provide an interface that generates a user style sheet (or

102 7 Jun 2011 17:58

Assigning property values, Cascading, and Inheritance

behaves as if it did).

® User agent :[Conforming user agents|[p. 47] must apply a default style sheet (or
behave as if they did). A user agent’s default style sheet should present the
elements of the document language in ways that satisfy general presentation
expectations for the document language (e.g., for visual browsers, the EM
element in HTML is presented using an italic font). See |A sample style sheet for |
[p. 453] for a recommended default style sheet for HTML documents.

Note that the user may modify system settings (e.g., system colors) that affect
the default style sheet. However, some user agent implementations make it
impossible to change the values in the default style sheet.

Style sheets from these three origins will overlap in scope, and they interact
according to the cascade.

The CSS cascade assigns a weight to each style rule. When several rules apply,
the one with the greatest weight takes precedence.

By default, rules in author style sheets have more weight than rules in user style
sheets. Precedence is reversed, however, for "limportant” rules. All user and author
rules have more weight than rules in the UA’s default style sheet.

6.4.1 Cascading order

To find the value for an element/property combination, user agents must apply the
following sorting order:

1. Find all declarations that apply to the element and property in question, for the
target[media type] [p. 107] . Declarations apply if the associated selector
[p. 77] the element in question and the target medium matches the
media list on all @media rules containing the declaration and on all links on the
path through which the style sheet was reached.
2. Sort according to importance (normal or important) and origin (author, user, or
user agent). In ascending order of precedence:
1. user agent declarations
2. user normal declarations
3. author normal declarations
4. author important declarations
5. user important declarations
3. Sort rules with the same importance and origin by [specificity] [p. 104] of selector:
more specific selectors will override more general ones. Pseudo elements and
pseudo-classes are counted as normal elements and classes, respectively.
4. Finally, sort by order specified: if two declarations have the same weight, origin
and specificity, the latter specified wins. Declarations in imported style sheets
are considered to be before any declarations in the style sheet itself.

7 Jun 2011 17:58 103

Assigning property values, Cascading, and Inheritance

Apart from the "limportant” setting on individual declarations, this strategy gives
author’s style sheets higher weight than those of the reader. User agents must give
the user the ability to turn off the influence of specific author style sheets, e.qg.,
through a pull-down menu. Conformance to UAAG 1.0 checkpoint 4.14 satisfies this
condition

6.4.2 limportant rules

CSS attempts to create a balance of power between author and user style sheets.
By default, rules in an author’s style sheet override those in a user’s style sheet (see
cascade rule 3).

However, for balance, an "limportant” declaration (the delimiter token "!" and
keyword "important" follow the declaration) takes precedence over a nhormal declara-
tion. Both author and user style sheets may contain "limportant" declarations, and
user "limportant" rules override author "limportant" rules. This CSS feature improves
accessibility of documents by giving users with special requirements (large fonts,
color combinations, etc.) control over presentation.

Declaring a shorthand property (e.g.,[background’) to be "limportant” is equivalent
to declaring all of its sub-properties to be "limportant".

Example(s):

The first rule in the user’s style sheet in the following example contains an "limpor-
tant" declaration, which overrides the corresponding declaration in the author’s style
sheet. The second declaration will also win due to being marked "limportant”.
However, the third rule in the user’s style sheet is not "limportant” and will therefore
lose to the second rule in the author’s style sheet (which happens to set style on a
shorthand property). Also, the third author rule will lose to the second author rule
since the second rule is "limportant”. This shows that "limportant” declarations have
a function also within author style sheets.

/* From the user’s style sheet */
p { text-indent: 1em ! important }
p { font-style: italic ! important }

p { font-size: 18pt }

/* From the author’s style sheet */

p { text-indent: 1.5em !important }

p { font: normal 12pt sans-serif limportant }
p { font-size: 24pt }

6.4.3 Calculating a selector’s specificity

A selector’s specificity is calculated as follows:

e count 1 if the declaration is from is a 'style’ attribute rather than a rule with a
selector, 0 otherwise (= a) (In HTML, values of an element’s "style" attribute are
style sheet rules. These rules have no selectors, so a=1, b=0, c=0, and d=0.)

e count the number of ID attributes in the selector (= b)

104 7 Jun 2011 17:58

Assigning property values, Cascading, and Inheritance

e count the number of other attributes and pseudo-classes in the selector (= ¢)
e count the number of element names and pseudo-elements in the selector (= d)

The specificity is based only on the form of the selector. In particular, a selector of
the form "[id=p33]" is counted as an attribute selector (a=0, b=0, c=1, d=0), even if
the id attribute is defined as an "ID" in the source document’s DTD.

Concatenating the four numbers a-b-c-d (in a number system with a large base)
gives the specificity.

Example(s):
Some examples:

* {} /*a=0 b=0 c=0 d=0 -> specificity = 0,0,0,0 */

li {} /*a=0 b=0 c=0 d=1 -> specificity = 0,0,0,1 */
li:first-line {} /* a=0 b=0 c=0 d=2 -> specificity = 0,0,0,2 */
ulli {} /*a=0 b=0 c=0 d=2 -> specificity = 0,0,0,2 */
ulol+li {} /*a=0 b=0 c=0 d=3 -> specificity = 0,0,0,3 */

hl + *[rel=up]{} /* a=0 b=0 c=1 d=1 -> specificity = 0,0,1,1 */
ul ol li.red {} /*a=0 b=0 c=1 d=3 -> specificity = 0,0,1,3 */
li.red.level {} /*a=0 b=0 c=2 d=1 -> specificity = 0,0,2,1 */
#x34y {} /*a=0 b=1 c=0 d=0 -> specificity = 0,1,0,0 */
style="" /* a=1 b=0 c=0 d=0 -> specificity = 1,0,0,0 */

<HEAD>
<STYLE type="text/css">
#x97z { color: red }
</STYLE>
</HEAD>
<BODY>
<P ID=x97z style="color: green">
</BODY>

In the above example, the color of the P element would be green. The declaration
in the "style" attribute will override the one in the STYLE element because of cascad-
ing rule 3, since it has a higher specificity.

6.4.4 Precedence of non-CSS presentational hints

The UA may choose to honor presentational attributes in an HTML source docu-
ment. If so, these attributes are translated to the corresponding CSS rules with
specificity equal to 0, and are treated as if they were inserted at the start of the
author style sheet. They may therefore be overridden by subsequent style sheet
rules. In a transition phase, this policy will make it easier for stylistic attributes to
coexist with style sheets.

For HTML, any attribute that is not in the following list should be considered
presentational: abbr, accept-charset, accept, accesskey, action, alt, archive, axis,
charset, checked, cite, class, classid, code, codebase, codetype, colspan, coords,
data, datetime, declare, defer, dir, disabled, enctype, for, headers, href, hreflang,
http-equiv, id, ismap, label, lang, language, longdesc, maxlength, media, method,
multiple, name, nohref, object, onblur, onchange, onclick, ondbilclick, onfocus,

7 Jun 2011 17:58 105

Assigning property values, Cascading, and Inheritance

onkeydown, onkeypress, onkeyup, onload, onload, onmousedown, onmousemove,
onmouseout, onmouseover, onmouseup, onreset, onselect, onsubmit, onunload,
onunload, profile, prompt, readonly, rel, rev, rowspan, scheme, scope, selected,
shape, span, src, standby, start, style, summary, title, type (except on LI, OL and UL
elements), usemap, value, valuetype, version.

For other languages, all document language-based styling must be translated to
the corresponding CSS and either enter the cascade at the user agent level or, as
with HTML presentational hints, be treated as author level rules with a specificity of
zero placed at the start of the author style sheet.

Example(s):

The following user style sheet would override the font weight of ‘b’ elements in all
documents, and the color of 'font’ elements with color attributes in XML documents.
It would not affect the color of any 'font’ elements with color attributes in HTML docu-
ments:

b { font-weight: normal; }
font[color] { color: orange; }

The following, however, would override the color of font elements in all docu-
ments:

font[color] { color: orange ! important; }

106 7 Jun 2011 17:58

Media types

7 Media types

Contents
[7.1 Introduction to mediatypes,1Q7
[7.2 Specifying media-dependent style sheets|lor
[7.2.1 The @mediarulel 108
[7.3 Recognized mediatypes| 108
[7.3.1 Mediagroups|110

7.1 Introduction to media types

One of the most important features of style sheets is that they specify how a docu-
ment is to be presented on different media: on the screen, on paper, with a speech
synthesizer, with a braille device, etc.

Certain CSS properties are only designed for certain media (e.g., the
[page-break-before’| property only applies to paged media). On occasion, however,
style sheets for different media types may share a property, but require different
values for that property. For example, the[font-size] property is useful both for
screen and print media. The two media types are different enough to require differ-
ent values for the common property; a document will typically need a larger font on a
computer screen than on paper. Therefore, it is necessary to express that a style
sheet, or a section of a style sheet, applies to certain media types.

7.2 Specifying media-dependent style sheets

There are currently two ways to specify media dependencies for style sheets:

® Specify the target medium from a style sheet with the @media or @import
at-rules.

Example(s):

@import url("fancyfonts.css") screen;
@media print {
[* style sheet for print goes here */

}

® Specify the target medium within the document language. For example, in
HTML 4 ([HTML4]), the "media" attribute on the LINK element specifies the
target media of an external style sheet:

7 Jun 2011 17:58 107

Media types

<IDOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN">
<HTML>
<HEAD>
<TITLE>Link to a target medium</TITLE>
<LINK REL="stylesheet" TYPE="text/css"
MEDIA="print, handheld" HREF="foo.css">
</HEAD>
<BODY>
<P>The body...
</BODY>
</HTML>

The [@import] [p. 102] rule is defined in the [chapter on the cascade][p. 99] .

7.2.1 The @media rule

An @media rule specifies the target[media types| [p. 108] (separated by commas) of
a set of [statements] [p. 50] (delimited by curly braces). Invalid statements must be
ignored per [4.1.7 "Rule sets, declaration blocks, and selectors'] [p. 58] and [4.2]

['Rules for handling parsing errors.][p. 60] The @media construct allows style sheet

rules for various media in the same style sheet:

@media print {
body { font-size: 10pt }
}

@media screen {
body { font-size: 13px }
}

@media screen, print {
body { line-height: 1.2 }
}

Style rules outside of @media rules apply to all media types that the style sheet
applies to. At-rules inside @media are invalid in CSS2.1.

7.3 Recognized media types

The names chosen for CSS media types reflect target devices for which the relevant
properties make sense. In the following list of CSS media types the names of media
types are normative, but the descriptions are informative. Likewise, the "Media" field
in the description of each property is informative.

all
Suitable for all devices.
braille
Intended for braille tactile feedback devices.
embossed
Intended for paged braille printers.
handheld
Intended for handheld devices (typically small screen, limited bandwidth).

108 7 Jun 2011 17:58

Media types

print
Intended for paged material and for documents viewed on screen in print
preview mode. Please consult the section on[paged media [p. 223] for informa-
tion about formatting issues that are specific to paged media.

projection
Intended for projected presentations, for example projectors. Please consult the
section on[paged medig [p. 223] for information about formatting issues that are
specific to paged media.

screen
Intended primarily for color computer screens.

speech
Intended for speech synthesizers. Note: CSS2 had a similar media type called
‘aural’ for this purpose. See the appendix onjaural style sheets|[p. 305] for

details.

tty
Intended for media using a fixed-pitch character grid (such as teletypes, termi-
nals, or portable devices with limited display capabilities). Authors should not
use [pixel unitg| [p. 63] with the "tty" media type.

tv

Intended for television-type devices (low resolution, color, limited-scrollability
screens, sound available).

Media type names are case-insensitive.

Media types are mutually exclusive in the sense that a user agent can only
support one media type when rendering a document. However, user agents may use
different media types on different canvases. For example, a document may (simulta-
neously) be shown in 'screen’ mode on one canvas and 'print’ mode on another
canvas.

Note that a multimodal media type is still only one media type. The 'tv’ media type,
for example, is a multimodal media type that renders both visually and aurally to a
single canvas.

@media and @import rules with unknown media types (that are nonetheless valid
identifiers) are treated as if the unknown media types are not present. If an
@media/@import rule contains a malformed media type (not an identifier) then the
statement is invalid.

Note: Media Queries supercedes this error handling.
Example(s):

For example, in the following snippet, the rule on the P element applies in 'screen’
mode (even though the '3D’ media type is not known).

@media screen, 3D {
P { color: green; }

}

7 Jun 2011 17:58 109

Media types

Note. Future updates of CSS may extend the list of media types. Authors should
not rely on media type names that are not yet defined by a CSS specification.

7.3.1 Media groups

This section is informative, not normative.

Each CSS property definition specifies which media types the property applies to.
Since properties generally apply to several media types, the "Applies to media"
section of each property definition lists media groups rather than individual media
types. Each property applies to all media types in the media groups listed in its defi-
nition.

CSS 2.1 defines the following media groups:

continuous or paged.

visual , audio, speech, or tactile .

grid (for character grid devices), or bitmap .

interactive (for devices that allow user interaction), or static (for those that do
not).

e all (includes all media types)

The following table shows the relationships between media groups and media
types:

Relationship between media groups and media types

Il/lyepdeiz; Media Groups
continuous/paged | visual/audio/speech/tactile | grid/bitmap | interactive/static

braille continuous tactile grid both

embossed paged tactile grid static

handheld both visual, audio, speech both both

print paged visual bitmap static
projection paged visual bitmap interactive

screen continuous visual, audio bitmap both

speech continuous speech N/A both

tty continuous visual grid both

tv both visual, audio bitmap both

110 7 Jun 2011 17:58

Box model

8 Box model
Contents
[8.1 Box dimensions| . . . 111
[8.2 Example of margins, padding, and bordersl .. . 113
[8.3 Margin properties: 'margin-top’, 'margin-right’, ’'margin-bottom’, 'margin-left’
[and’margin] . . 115
18.3.1 Collapsing marqmsl . 117
[8.4 Padding properties: 'padding-top’, ’paddlng rlght’ ’paddlng bottom |
[padding-left’, and 'padding]| Y X
[8.5 Border properties) . . 120
[8.5.1 Border width: 'border- top W|dth’ ’border rlght W|dth |
[border-bottom-width’, 'border-left-width’, and 'border-width] . . . 120
[8.5.2 Border color: 'border-top-color’, ’border-right-color’ |
[border-bottom-color’, ’border-left-color’, and 'border-color] . . . 122

[8.5.3 Border style: 'border-top-style’, ’border-right-style’}|
[border-bottom-style’, 'border-left-style’, and 'border-style] .. . 123

[8.5.4 Border shorthand properties: 'border-top’, 'border-right’

[border-bottony’, 'border-left’, and 'border] 124
[8.6 The box model for inline elements in bidirectional contexﬂ .. . 126

The CSS box model describes the rectangular boxes that are generated for
elements in the [document tree|[p. 45] and laid out according to the [visual formatting |

[mode] [p. 127] .

8.1 Box dimensions

Each box has a content area (e.g., text, an image, etc.) and optional surrounding
padding, border, and margin areas; the size of each area is specified by properties
defined below. The following diagram shows how these areas relate and the termi-
nology used to refer to pieces of margin, border, and padding:

7 Jun 2011 17:58

111

Box model

Top
| ™ Margin (Transparent) |
I B Border |
I r- - """ "> """"—=>- """—">""—>">\—-«+ —‘ I
| | TP Padding | I
' | | |

Lett I Lm LB LP Content RP RB | RM | Right

: | |
| | BP | :
: BB |
| BM I
h______________________l

Bottom

- == = Margin edge
— Border edge
— — — Padding edge

— Content edge

The margin, border, and padding can be broken down into top, right, bottom, and
left segments (e.g., in the diagram, "LM" for left margin, "RP" for right padding, "TB"
for top border, etc.).

The perimeter of each of the four areas (content, padding, border, and margin) is
called an "edge", so each box has four edges:

content edge or inner edge
The content edge surrounds the rectangle given by the width|[p. 175] and [height]
[p. 184] of the box, which often depend on the element’s |rendered content]
[p. 45] . The four content edges define the box’s content box.

padding edge
The padding edge surrounds the box padding. If the padding has 0 width, the
padding edge is the same as the content edge. The four padding edges define
the box’s padding box.

border edge
The border edge surrounds the box’s border. If the border has 0 width, the
border edge is the same as the padding edge. The four border edges define the
box’s border box.

margin edge or outer edge
The margin edge surrounds the box margin. If the margin has 0 width, the
margin edge is the same as the border edge. The four margin edges define the
box’s margin box.

112 7 Jun 2011 17:58

Box mode

Each edge may be broken down into a top, right, bottom, and left edge.

The dimensions of the content area of a box — the content width and content
height — depend on several factors: whether the element generating the box has the
[width’lor[height] property set, whether the box contains text or other boxes, whether

the box is a table, etc. Box widths and heights are discussed in the chapter on
[formatting model details|[p. 171] .

The background style of the content, padding, and border areas of a box is speci-

fied by the property of the generating element. Margin backgrounds are
always transparent.

8.2 Example of margins, padding, and borders

This example illustrates how margins, padding, and borders interact. The example
HTML document:

<IDOCTYPE HTML PUBLIC "-//W3C//[DTD HTML 4.01//EN">
<HTML>
<HEAD>
<TITLE>Examples of margins, padding, and borders</TITLE>
<STYLE type="text/css">
UL {
background: yellow;
margin: 12px 12px 12px 12px;
padding: 3px 3px 3px 3px;
/* No borders set */

}
LI {
color: white; /* text color is white */
background: blue; [* Content, padding will be blue */

margin: 12px 12px 12px 12px;
padding: 12px Opx 12px 12px; /* Note Opx padding right */
list-style: none /* no glyphs before a list item */
/* No borders set */
}

Ll.withborder {
border-style: dashed,;
border-width: medium; /* sets border width on all sides */
border-color: lime;
}
</STYLE>
</HEAD>
<BODY>
<uUL>
First element of list
<LI class="withborder">Second element of list is
a bit longer to illustrate wrapping.

</BODY>
</HTML>

7 Jun 2011 17:58 113

Box model

results in ajdocument tree|[p. 45] with (among other relationships) a UL element
that has two LI children.

The first of the following diagrams illustrates what this example would produce.
The second illustrates the relationship between the margins, padding, and borders of
the UL elements and those of its children LI elements. (Image is not to scale.)

First elament of list

. Second element of listis a
- bit longer o lllusirate

| wrapping.

Conlen! width of LI

First element of list

' Sacond slemant of list is &
bit Inngar to illustrate
| wrapping.

Collapsed margin is
I: mﬁm. 12px w120

L margins

Content width of UL

Box width of LIL
Note that:

® The[content width] [p. 113] for each LI box is calculated top-down; the [containing]
[blocK] [p. 128] for each LI box is established by the UL element.

® The margin box height of each LI box depends on its|content heighf [p. 113],

114 7 Jun 2011 17:58

Box model

plus top and bottom padding, borders, and margins. Note that vertical margins
between the LI boxes [collapse][p. 117]

e The right padding of the LI boxes has been set to zero width (the [padding] prop-
erty). The effect is apparent in the second illustration.

® The margins of the LI boxes are transparent — margins are always transparent
— so the background color (yellow) of the UL padding and content areas shines
through them.

e The second LI element specifies a dashed border (the [border-style] property).

8.3 Margin properties: 'margin-top’, |margin-right’,
'margin-bottom’}, [margin-left’], and [margin’
Margin properties specify the width of the [margin area [p. 111] of a box. The [margin]

shorthand property sets the margin for all four sides while the other margin proper-
ties only set their respective side. These properties apply to all elements, but vertical
margins will not have any effect on non-replaced inline elements.

The properties defined in this section refer to the <margin-width> value type,
which may take one of the following values:

Specifies a fixed width.
|<percentage> |
The percentage is calculated with respect to the width of the generated box’s
[containing blocK] [p. 128] . Note that this is true for[margin-top]and
[margin-bottom] as well. If the containing block’s width depends on this element,
then the resulting layout is undefined in CSS 2.1.
auto
See the section on|calculating widths and margins|[p. 175] for behavior.

Negative values for margin properties are allowed, but there may be implementa-
tion-specific limits.

'margin-top’ , 'margin-bottom’

Value: [kmargin-width>|| inherit

Initial: 0

Applies to: all elements except elements with table display types other
than table-caption, table and inline-table

Inherited: no

Percentages: refer to width of containing block

Media:

Computed value: the percentage as specified or the absolute length

7 Jun 2011 17:58 115

Box model

These properties have no effect on non-replaced inline elements.

‘margin-right’ , 'margin-left’

Value: [Kmargin-width>||[inherit

Initial: 0

Applies to: all elements except elements with table display types other
than table-caption, table and inline-table

Inherited: no

Percentages: refer to width of containing block

Media:

Computed value: the percentage as specified or the absolute length

These properties set the top, right, bottom, and left margin of a box.
Example(s):

h1 { margin-top: 2em }

‘margin’
Value: [<margin-width>}1,4} | [nherit
Initial: see individual properties
Applies to: all elements except elements with table display types other
than table-caption, table and inline-table
Inherited: no
Percentages: refer to width of containing block
Media:

Computed value: see individual properties

The property is a shorthand property for setting[margin-top],
[margin-right] [margin-bottom], and[margin-left] at the same place in the style sheet.

If there is only one component value, it applies to all sides. If there are two values,
the top and bottom margins are set to the first value and the right and left margins
are set to the second. If there are three values, the top is set to the first value, the
left and right are set to the second, and the bottom is set to the third. If there are four
values, they apply to the top, right, bottom, and left, respectively.

Example(s):

body { margin: 2em } /* all margins set to 2em */

body { margin: 1lem 2em} /*top & bottom = lem, right & left = 2em */

body { margin: 1em 2em 3em } /* top=1em, right=2em, bottom=3em, left=2em */

The last rule of the example above is equivalent to the example below:

116 7 Jun 2011 17:58

Box model

body {
margin-top: lem;
margin-right: 2em;
margin-bottom: 3em;
margin-left: 2em; [* copied from opposite side (right) */

}

8.3.1 Collapsing margins

In CSS, the adjoining margins of two or more boxes (which might or might not be
siblings) can combine to form a single margin. Margins that combine this way are
said to collapse, and the resulting combined margin is called a collapsed margin.

Adjoining vertical margins collapse, except:

® Margins of the root element’s box do not collapse.
e If the top and bottom margins of an element with[clearance] [p. 149] are adjoin-

ing, its margins collapse with the adjoining margins of following siblings but that
resulting margin does not collapse with the bottom margin of the parent block.
Horizontal margins never collapse.

Two margins are adjoining if and only if:

e both belong to in-flow [block-level boxes|[p. 129] that participate in the same
[plock formatting context| [p. 138]
® no line boxes, no clearance, no padding and no border separate them (Note that
[certain zero-height line boxes| [p. 139] (see[9.4.2][p. 138]) are ignored for this
purpose.)
® both belong to vertically-adjacent box edges, i.e. form one of the following pairs:
O top margin of a box and top margin of its first in-flow child
O bottom margin of box and top margin of its next in-flow following sibling
O bottom margin of a last in-flow child and bottom margin of its parent if the
parent has 'auto’ computed height
O top and bottom margins of a box that does not establish a new block
formatting context and that has zero computed [min-height], zero or 'auto’
computed[height] and no in-flow children

A collapsed margin is considered adjoining to another margin if any of its compo-
nent margins is adjoining to that margin.

Note. Adjoining margins can be generated by elements that are not related as
siblings or ancestors.

Note the above rules imply that:
® Margins between a [p. 142] box and any other box do not collapse (not
even between a float and its in-flow children).

e Margins of elements that establish new block formatting contexts (such as floats
and elements with other than 'visible’) do not collapse with their

7 Jun 2011 17:58 117

Box model

in-flow children.

® Margins of[absolutely positioned|[p. 151] boxes do not collapse (not even with
their in-flow children).

® Margins of inline-block boxes do not collapse (not even with their in-flow chil-
dren).

® The bottom margin of an in-flow block-level element always collapses with the
top margin of its next in-flow block-level sibling, unless that sibling has clear-
ance.

® The top margin of an in-flow block element collapses with its first in-flow
block-level child’s top margin if the element has no top border, no top padding,
and the child has no clearance.

® The bottom margin of an in-flow block box with a[height] of 'auto’ and a
of zero collapses with its last in-flow block-level child’s bottom
margin if the box has no bottom padding and no bottom border and the child’s
bottom margin does not collapse with a top margin that has clearance.

® A box's own margins collapse if the [min-height] property is zero, and it has
neither top or bottom borders nor top or bottom padding, and it has a[height] of
either O or "auto’, and it does not contain a line box, and all of its in-flow chil-
dren’s margins (if any) collapse.

When two or more margins collapse, the resulting margin width is the maximum of
the collapsing margins’ widths. In the case of negative margins, the maximum of the
absolute values of the negative adjoining margins is deducted from the maximum of
the positive adjoining margins. If there are no positive margins, the maximum of the
absolute values of the adjoining margins is deducted from zero.

If the top and bottom margins of a box are adjoining, then it is possible for margins
to collapse through it. In this case, the position of the element depends on its rela-
tionship with the other elements whose margins are being collapsed.

e |[f the element’s margins are collapsed with its parent’s top margin, the top
border edge of the box is defined to be the same as the parent’s.

® Otherwise, either the element’s parent is not taking part in the margin collaps-
ing, or only the parent’s bottom margin is involved. The position of the element’s
top border edge is the same as it would have been if the element had a
non-zero bottom border.

Note that the positions of elements that have been collapsed through have no
effect on the positions of the other elements with whose margins they are being
collapsed; the top border edge position is only required for laying out descendants of
these elements.

118 7 Jun 2011 17:58

Box model

8.4 Padding properties: [padding-top’, |padding-right’
'‘padding-bottom’}, [padding-left] and|padding’

The padding properties specify the width of the [padding area| [p. 111] of a box. The
[padding] shorthand property sets the padding for all four sides while the other
padding properties only set their respective side.

The properties defined in this section refer to the <padding-width> value type,
which may take one of the following values:

Specifies a fixed width.

l<percentage> |
The percentage is calculated with respect to the width of the generated box’s
[containing block|[p. 128] , even for[padding-top’and[padding-bottom? If the
containing block’s width depends on this element, then the resulting layout is
undefined in CSS 2.1.

Unlike margin properties, values for padding values cannot be negative. Like
margin properties, percentage values for padding properties refer to the width of the
generated box’s containing block.

‘padding-top’ , '‘padding-right’ , 'padding-bottom’ , 'padding-left’

Value: [<padding-width>| | inherit]

Initial: 0

Applies to: all elements except table-row-group, table-header-group,
table-footer-group, table-row, table-column-group and
table-column

Inherited: no

Percentages: refer to width of containing block

Media:

Computed value: the percentage as specified or the absolute length

These properties set the top, right, bottom, and left padding of a box.
Example(s):

blockquote { padding-top: 0.3em }

‘padding’

7 Jun 2011 17:58 119

Box model

Value: [<padding-width>}1,4} | inheri]

Initial: see individual properties

Applies to: all elements except table-row-group, table-header-group,
table-footer-group, table-row, table-column-group and
table-column

Inherited: no

Percentages: refer to width of containing block

Media:

Computed value: see individual properties

The property is a shorthand property for setting[padding-top),
[padding-right’, [padding-bottom’, and[padding-left] at the same place in the style
sheet.

If there is only one component value, it applies to all sides. If there are two values,
the top and bottom paddings are set to the first value and the right and left paddings
are set to the second. If there are three values, the top is set to the first value, the
left and right are set to the second, and the bottom is set to the third. If there are four
values, they apply to the top, right, bottom, and left, respectively.

The surface color or image of the padding area is specified via the
property:

Example(s):

hi{
background: white;
padding: 1em 2em;
}

The example above specifies a '1lem’ vertical padding (padding-top] and
[padding-bottom’) and a '2em’ horizontal padding (padding-right] and [padding-left)).
The 'em’ unit is [relative] [p. 63] to the element’s font size: 'lem’ is equal to the size of
the font in use.

8.5 Border properties

The border properties specify the width, color, and style of the [border area| [p. 111] of
a box. These properties apply to all elements.

Note. Notably for HTML, user agents may render borders for certain user interface
elements (e.g., buttons, menus, etc.) differently than for "ordinary” elements.

8.5.1 Border width: [border-top-width’, [border-right-width’,
[border-bottom-width’, {border-left-width’, and [border-width’|

The border width properties specify the width of the [oorder ared [p. 111] . The prop-
erties defined in this section refer to the <border-width> value type, which may take
one of the following values:

120 7 Jun 2011 17:58

Box model

thin

A thin border.
medium

A medium border.
thick

A thick border.

The border’s thickness has an explicit value. Explicit border widths cannot be
negative.

The interpretation of the first three values depends on the user agent. The follow-
ing relationships must hold, however:

'thin’ <="medium’ <= "thick’.

Furthermore, these widths must be constant throughout a document.

'border-top-width’ , 'border-right-width’ , ’border-bottom-width’
'border-left-width’

Value: [<border-width>| | [inherit
Initial: medium

Applies to: all elements

Inherited: no

Percentages: N/A

Media:

Computed value: absolute length; 0’ if the border style is 'none’ or ’hidden’

These properties set the width of the top, right, bottom, and left border of a box.

'border-width’

Value: [<border-width>][1,4} |
Initial: see individual properties
Applies to: all elements

Inherited: no

Percentages: N/A

Media:

Computed value: see individual properties

This property is a shorthand property for setting [border-top-width’}

[border-right-width] [border-bottom-width], and[border-left-width] at the same place
in the style sheet.

If there is only one component value, it applies to all sides. If there are two values,
the top and bottom borders are set to the first value and the right and left are set to
the second. If there are three values, the top is set to the first value, the left and right
are set to the second, and the bottom is set to the third. If there are four values, they

7 Jun 2011 17:58 121

Box model

apply to the top, right, bottom, and left, respectively.
Example(s):

In the examples below, the comments indicate the resulting widths of the top,
right, bottom, and left borders:

h1 { border-width: thin } [* thin thin thin thin */
h1 { border-width: thin thick } [* thin thick thin thick */
h1 { border-width: thin thick medium} /* thin thick medium thick */

8.5.2 Border color: [border-top-color’, [border-right-color’
[border-bottom-color’|, [border-left-color’, and [border-color]|

The border color properties specify the color of a box’s border.

'border-top-color’ , ’border-right-color’ , 'border-bottom-color’
'border-left-color’

Value: | transparent | inheritl
Initial: the value of the 'color’ property
Applies to: all elements

Inherited: no

Percentages: N/A

Media:

Computed value: when taken from the 'color’ property, the computed value of
‘color’; otherwise, as specified

'border-color’

Value: [[ccolor>] | transparent [{1,4} |
Initial: see individual properties

Applies to: all elements

Inherited: no

Percentages: N/A

Media:

Computed value: see individual properties

The property sets the color of the four borders. Values have the
following meanings:

Specifies a color value.
transparent
The border is transparent (though it may have width).

122 7 Jun 2011 17:58

Box model

The property can have from one to four component values, and the
values are set on the different sides as for[border-width’.

If an element’s border color is not specified with a border property, user agents

must use the value of the element’s[color] property as the [computed valug] [p. 100]
for the border color.

Example(s):
In this example, the border will be a solid black line.

p{
color: black;

background: white;
border: solid;

}

8.5.3 Border style: [border-top-style’, [border-right-style’,
[border-bottom-style’|, [border-left-style’, and [border-style’|
The border style properties specify the line style of a box’s border (solid, double,

dashed, etc.). The properties defined in this section refer to the <border-style>
value type, which may take one of the following values:

none
No border; the computed border width is zero.
hidden
Same as 'none’, except in terms of border conflict resolution] [p. 292] for [table |

[p. 269] .
dotted

The border is a series of dots.
dashed
The border is a series of short line segments.
solid
The border is a single line segment.
double
The border is two solid lines. The sum of the two lines and the space between

them equals the value of [border-width]
groove
The border looks as though it were carved into the canvas.
ridge
The opposite of 'groove’: the border looks as though it were coming out of the
canvas.
inset
The border makes the box look as though it were embedded in the canvas.
outset
The opposite of 'inset’: the border makes the box look as though it were coming
out of the canvas.

7 Jun 2011 17:58 123

Box model

All borders are drawn on top of the box’s background. The color of borders drawn
for values of 'groove’, 'ridge’, 'inset’, and 'outset’ depends on the element’s
[color properties|[p. 122] , but UAs may choose their own algorithm to calculate the
actual colors used. For instance, if the 'border-color’ has the value 'silver’, then a UA
could use a gradient of colors from white to dark gray to indicate a sloping border.

‘border-top-style’ , 'border-right-style’ , ’border-bottom-style’ , 'border-left-style’

Value: [<border-style>| | |inherit
Initial: none

Applies to: all elements

Inherited: no

Percentages: N/A

Media:

Computed value: as specified

'border-style’

Value: [<border-style>{1,4} | inherig
Initial: see individual properties
Applies to: all elements

Inherited: no

Percentages: N/A

Media:

Computed value: see individual properties

The[border-style’| property sets the style of the four borders. It can have from one
to four component values, and the values are set on the different sides as for

‘border-width’above.
Example(s):

#xy34 { border-style: solid dotted }

In the above example, the horizontal borders will be 'solid’ and the vertical borders
will be 'dotted’.

Since the initial value of the border styles is 'none’, no borders will be visible
unless the border style is set.

8.5.4 Border shorthand properties: [border-top’, [border-right],
[border-bottom], [border-left], and

‘border-top’ , 'border-right’ , 'border-bottom’ , 'border-left’

124 7 Jun 2011 17:58

Box model

Value: [[kborder-width>| || <kborder-style>| || [<’border-top-color'>|] |
Initial: see individual properties

Applies to: all elements

Inherited: no

Percentages: N/A

Media:

Computed value: see individual properties

This is a shorthand property for setting the width, style, and color of the top, right,
bottom, and left border of a box.

Example(s):
h1 { border-bottom: thick solid red }

The above rule will set the width, style, and color of the border below the H1
element. Omitted values are set to their [p. 31] . Since the following rule
does not specify a border color, the border will have the color specified by the [color]
property:

H1 { border-bottom: thick solid }

‘border’
Value: [[cborder-width>| || |<border-style>| || [<’border-top-color'>] |
Initial: see individual properties
Applies to: all elements
Inherited: no
Percentages: N/A
Media:

Computed value: see individual properties

The property is a shorthand property for setting the same width, color, and
style for all four borders of a box. Unlike the shorthand|margin’and[padding] proper-
ties, the[border] property cannot set different values on the four borders. To do so,
one or more of the other border properties must be used.

Example(s):
For example, the first rule below is equivalent to the set of four rules shown after it:

p { border: solid red }

p{
border-top: solid red;
border-right: solid red;
border-bottom: solid red;
border-left: solid red

}

7 Jun 2011 17:58 125

Box model

Since, to some extent, the properties have overlapping functionality, the order in
which the rules are specified is important.

Example(s):
Consider this example:

blockquote {
border: solid red;
border-left: double;
color: black;

}

In the above example, the color of the left border is black, while the other borders
are red. This is due to[border-left] setting the width, style, and color. Since the color
value is not given by the [border-Ieft] property, it will be taken from the[color] prop-

erty. The fact that the property is set after the [border-left] property is not rele-
vant.

8.6 The box model for inline elements in bidirectional
context

For each line box, UAs must take the inline boxes generated for each element and
render the margins, borders and padding in visual order (not logical order).

When the element’s[direction] property is 'Itr’, the left-most generated box of the
first line box in which the element appears has the left margin, left border and left
padding, and the right-most generated box of the last line box in which the element
appears has the right padding, right border and right margin.

When the element's[direction] property is 'rtl’, the right-most generated box of the
first line box in which the element appears has the right padding, right border and
right margin, and the left-most generated box of the last line box in which the
element appears has the left margin, left border and left padding.

126 7 Jun 2011 17:58

Visual formatting model

9 Visual formatting model

Contents

[9.1 Introduction to the visual formatting model|
[9.1.1 The viewport
[9.1.2 Containing blocks| .
[9.2 Controlling box generation|)
[9.2.1 Block-level elements and block boxesI
[9.2.1.1 Anonymous block boxes|
[9.2.2 Inline-level elements and inline boxes|
[9.2.2.1 Anonymous inline boxes|
[9.2.3 Run-in boxes|
[9.2.4 The ’display’ property|
[9.3 Positioning schemesg| .

19.3.1 Choosing a positioning scheme posmon propertyl .

[9.3.2 Box offsets: 'top’, right’, ’bottom’, ’left]
[9.4 Normal flow] . ..

[9.4.1 Block formatting contextsl

[9.4.2 Inline formatting contexts|

[9.4.3 Relative positioning|

9.5 Floats .
[9.5.1 Positioning the float the ’float propertyl

[9.5.2 Controlling flow next to floats: the 'clear’ property|

[9.6 Absolute positioning| .
[9.6.1 Fixed positioning| ..
[9.7 Relationships between 'display’, 'position’, and ’roatI

[9.8 Comparison of normal flow, floats, and absolute posmonmgl

[9.8.1 Normal flow|

[9.8.2 Relative positioning|

[9.8.3 Floating a box| .

[9.8.4 Absolute positioning|
[9.9 Layered presentation|

[9.9.1 Specifying the stack level: the Z- mdex propertyl

[9.10 Text direction: the 'direction’ and 'unicode-bidi’ properties|

9.1 Introduction to the visual formatting model

This chapter and the next describe the visual formatting model: how user agents

process the [document tre€] [p. 45] for visual [p. 107] .

7 Jun 2011 17:58

. 127
. 128
. 128
. 129
. 129
. 129
. 131
. 132
. 132
. 132
. 134
. 134
. 135
. 137
. 138
. 138
. 141
. 142
. 146
. 148
. 151
. 151
. 153
. 154
. 155
. 155
. 156
. 159
. 163
. 163
. 165

127

Visual formatting model

In the visual formatting model, each element in the document tree generates zero
or more boxes according to the [p. 111] . The layout of these boxes is
governed by:

[box dimensiong|[p. 111] and ftype] [p. 129] .

[positioning scheme] [p. 134] (normal flow, float, and absolute positioning).
relationships between elements in the [document tree | [p. 45]

external information (e.g., viewport size, [p. 45] dimensions of images,
etc.).

The properties defined in this chapter and the next apply to both|continuous media|

[p. 110] and [paged media] [p. 110] . However, the meanings of the [margin properties]
[p. 115] vary when applied to paged media (see the[page model [p. 224] for details).

The visual formatting model does not specify all aspects of formatting (e.g., it does
not specify a letter-spacing algorithm). (Conforming user agents|[p. 47] may behave
differently for those formatting issues not covered by this specification.

9.1.1 The viewport

User agents for|continuous media| [p. 110] generally offer users a viewport (a window
or other viewing area on the screen) through which users consult a document. User
agents may change the document’s layout when the viewport is resized (see the
[initial containing block|[p. 171]).

When the viewport is smaller than the area of the canvas on which the document
is rendered, the user agent should offer a scrolling mechanism. There is at most one
viewport per[canvag|[p. 40] , but user agents may render to more than one canvas
(i.e., provide different views of the same document).

9.1.2 Containing blocks

In CSS 2.1, many box positions and sizes are calculated with respect to the edges of
a rectangular box called a containing block. In general, generated boxes act as
containing blocks for descendant boxes; we say that a box "establishes" the contain-
ing block for its descendants. The phrase "a box’s containing block™ means "the
containing block in which the box lives," not the one it generates.

Each box is given a position with respect to its containing block, but it is not
confined by this containing block; it may [overflow][p. 195] .

The[detailg] [p. 171] of how a containing block’s dimensions are calculated are
described in the [next chapter [p. 171] .

128 7 Jun 2011 17:58

Visual formatting model

9.2 Controlling box generation

The following sections describe the types of boxes that may be generated in
CSS 2.1. A box’s type affects, in part, its behavior in the visual formatting model. The

property, described below, specifies a box’s type.

9.2.1 Block-level elements and block boxes

Block-level elements are those elements of the source document that are formatted
visually as blocks (e.g., paragraphs). The following values of the [display] property
make an element block-level: 'block’, 'list-item’, and 'table’.

Block-level boxes are boxes that participate in a|block formatting context.[p. 138]
Each block-level element generates a principal block-level box that contains descen-
dant boxes and generated content and is also the box involved in any positioning
scheme. Some block-level elements may generate additional boxes in addition to the
principal box: 'list-item’ elements. These additional boxes are placed with respect to
the principal box.

Except for table boxes, which are described in a later chapter, and replaced
elements, a block-level box is also a block container box. A block container box
either contains only block-level boxes or establishes an inline formatting context and
thus contains only inline-level boxes. Not all block container boxes are block-level
boxes: non-replaced inline blocks and non-replaced table cells are block containers
but not block-level boxes. Block-level boxes that are also block containers are called
block boxes.

The three terms "block-level box," "block container box," and "block box" are
sometimes abbreviated as "block” where unambiguous.

9.2.1.1 Anonymous block boxes

In a document like this:

<DIV>
Some text
<P>More text
</DIV>

(and assuming the DIV and the P both have 'display: block’), the DIV appears to
have both inline content and block content. To make it easier to define the format-
ting, we assume that there is an anonymous block box around "Some text".

7 Jun 2011 17:58 129

Visual formatting model

IV box

anonymous box

P box

Diagram showing the three boxes, of which one is anonymous, for the example
above.

In other words: if a block container box (such as that generated for the DIV above)
has a block-level box inside it (such as the P above), then we force it to have only
block-level boxes inside it.

When an inline box contains an in-flow block-level box, the inline box (and its
inline ancestors within the same line box) are broken around the block-level box (and
any block-level siblings that are consecutive or separated only by collapsible whites-
pace and/or out-of-flow elements), splitting the inline box into two boxes (even if
either side is empty), one on each side of the block-level box(es). The line boxes
before the break and after the break are enclosed in anonymous block boxes, and
the block-level box becomes a sibling of those anonymous boxes. When such an
inline box is affected by relative positioning, any resulting translation also affects the
block-level box contained in the inline box.

Example(s):
This model would apply in the following example if the following rules:

p {display:inline }
span { display: block }

were used with this HTML document;

<IDOCTYPE HTML PUBLIC "-//W3C//IDTD HTML 4.01//EN">
<HEAD>

<TITLE>Anonymous text interrupted by a block</TITLE>
</HEAD>

<BODY>

<p>

This is anonynous text before the SPAN
This is the content of SPAN.

This is anonymous text after the SPAN

</P>

</BODY>

130 7 Jun 2011 17:58

Visual formatting model

The P element contains a chunk (C1) of anonymous text followed by a block-level
element followed by another chunk (C2) of anonymous text. The resulting boxes
would be a block box representing the BODY, containing an anonymous block box
around C1, the SPAN block box, and another anonymous block box around C2.

The properties of anonymous boxes are inherited from the enclosing non-anony-
mous box (e.g., in the example just below the subsection heading "Anonymous block
boxes", the one for DIV). Non-inherited properties have their initial value. For
example, the font of the anonymous box is inherited from the DIV, but the margins
will be 0.

Properties set on elements that cause anonymous block boxes to be generated
still apply to the boxes and content of that element. For example, if a border had
been set on the P element in the above example, the border would be drawn around
C1 (open at the end of the line) and C2 (open at the start of the line).

Some user agents have implemented borders on inlines containing blocks in other
ways, e.g., by wrapping such nested blocks inside "anonymous line boxes" and thus
drawing inline borders around such boxes. As CSS1 and CSS2 did not define this
behavior, CSS1-only and CSS2-only user agents may implement this alternative
model and still claim conformance to this part of CSS 2.1. This does not apply to
UAs developed after this specification was released.

Anonymous block boxes are ignored when resolving percentage values that would
refer to it: the closest non-anonymous ancestor box is used instead. For example, if
the child of the anonymous block box inside the DIV above needs to know the height
of its containing block to resolve a percentage height, then it will use the height of
the containing block formed by the DIV, not of the anonymous block box.

9.2.2 Inline-level elements and inline boxes

Inline-level elements are those elements of the source document that do not form
new blocks of content; the content is distributed in lines (e.g., emphasized pieces of
text within a paragraph, inline images, etc.). The following values of the [display]
property make an element inline-level: 'inline’, 'inline-table’, and 'inline-block’.
Inline-level elements generate inline-level boxes, which are boxes that participate in
an inline formatting context.

An inline box is one that is both inline-level and whose contents participate in its
containing inline formatting context. A non-replaced element with a 'display’ value of
‘inline’ generates an inline box. Inline-level boxes that are not inline boxes (such as
replaced inline-level elements, inline-block elements, and inline-table elements) are
called atomic inline-level boxes because they participate in their inline formatting
context as a single opaque box.

7 Jun 2011 17:58 131

Visual formatting model

9.2.2.1 Anonymous inline boxes

Any text that is directly contained inside a block container element (not inside an
inline element) must be treated as an anonymous inline element.

In a document with HTML markup like this:

<p>Some emphasized text</p>

the <p> generates a block box, with several inline boxes inside it. The box for
"emphasized" is an inline box generated by an inline element (), but the other
boxes ("Some" and "text") are inline boxes generated by a block-level element
(<p>). The latter are called anonymous inline boxes, because they do not have an
associated inline-level element.

Such anonymous inline boxes inherit inheritable properties from their block parent
box. Non-inherited properties have their initial value. In the example, the color of the
anonymous inline boxes is inherited from the P, but the background is transparent.

White space content that would subsequently be collapsed away according to the
property does not generate any anonymous inline boxes.

If it is clear from the context which type of anonymous box is meant, both anony-
mous inline boxes and anonymous block boxes are simply called anonymous boxes
in this specification.

There are more types of anonymous boxes that arise when formatting
[p. 273] .

9.2.3 Run-in boxes

[This section exists so that the section numbers are the same as in previous drafts.
'Display: run-in’ is now defined in CSS level 3 (see[CSS basic box model|[p. ?7?]).]

9.2.4 The property

‘display’

Value: inline | block | list-item | inline-block | table | inline-table |
table-row-group | table-header-group | table-footer-group |
table-row | table-column-group | table-column | table-cell |
table-caption | none | [inherit]

Initial: inline

Applies to: all elements

Inherited: no

Percentages: N/A

Media:

Computed value: see text

132 7 Jun 2011 17:58

Visual formatting model

The values of this property have the following meanings:

block
This value causes an element to generate a block box.

inline-block
This value causes an element to generate an inline-level block container. The
inside of an inline-block is formatted as a block box, and the element itself is
formatted as an atomic inline-level box.

inline
This value causes an element to generate one or more inline boxes.

list-item
This value causes an element (e.g., LI in HTML) to generate a principal block
box and a marker box. For information about lists and examples of list format-
ting, please consult the section on [lists] [p. 214] .

none
This value causes an element to not appear in the[formatting structure|[p. 40]
(i.e., in visual media the element generates no boxes and has no effect on
layout). Descendant elements do not generate any boxes either; the element
and its content are removed from the formatting structure entirely. This behavior
cannot be overridden by setting the [display] property on the descendants.

Please note that a display of 'none’ does not create an invisible box; it creates
no box at all. CSS includes mechanisms that enable an element to generate
boxes in the formatting structure that affect formatting but are not visible them-
selves. Please consult the section on visibility] [p. 201] for details.

[tablel inline-tablel table-row-group}, ftable-column|, table-column-group,

[table-header-group) table-footer-group|, [table-row,, table-cell, and [table-caption|
These values cause an element to behave like a table element (subject to
restrictions described in the chapter onftableg [p. 269]).

The computed value is the same as the specified value, except for positioned and
floating elements (see [Relationships between 'display’, 'position’, and ’float] [p. 153])
and for the root element. For the root element, the computed value is changed as
described in the section on the [relationships between 'display’, 'position’, and 'float]
[p. 153] .

Note that although the [initial valug] [p. 31] of [display]is ’inline’, rules in the user
agent’s[default style sheef] [p. 103] may[override] [p. 99] this value. See the [sample]
[p. 453] for HTML 4 in the appendix.

Example(s):
Here are some examples of the [display] property:

p {display: block }

em {display: inline }

li {display: list-item }

img { display: none} /* Do not display images */

7 Jun 2011 17:58 133

Visual formatting model

9.3 Positioning schemes

In CSS 2.1, a box may be laid out according to three positioning schemes:

1. [Normal flow|[p. 137] . In CSS 2.1, normal flow includes |block formatting|[p. 138]

of block-level boxes, [inline formatting|[p. 138] of inline-level boxes, andjrelative|
[p. 141] of block-level and inline-level boxes.

2. [Floats|[p. 142] . In the float model, a box is first laid out according to the normal

flow, then taken out of the flow and shifted to the left or right as far as possible.
Content may flow along the side of a float.

3. |Absolute positioning|[p. 151] . In the absolute positioning model, a box is

removed from the normal flow entirely (it has no impact on later siblings) and
assigned a position with respect to a containing block.

An element is called out of flow if it is floated, absolutely positioned, or is the root
element. An element is called in-flow if it is not out-of-flow. The flow of an element A
is the set consisting of A and all in-flow elements whose nearest out-of-flow ancestor
is A.

Note. CSS 2.1's positioning schemes help authors make their documents more
accessible by allowing them to avoid mark-up tricks (e.g., invisible images) used for
layout effects.

9.3.1 Choosing a positioning scheme: property

The [position’] and [float] properties determine which of the CSS 2.1 positioning algo-
rithms is used to calculate the position of a box.

‘position’
Value: static | relative | absolute | fixed | [nherit
Initial: static
Applies to: all elements
Inherited: no
Percentages: N/A
Media:

Computed value: as specified

The values of this property have the following meanings:

static

The box is a normal box, laid out according to the [p. 137]. The
[top] [right] [bottom], and [left] properties do not apply.

relative

134

The box’s position is calculated according to the [normal flow] [p. 137] (this is
called the position in normal flow). Then the box is offset|[relative] [p. 141] to its
normal position. When a box B is relatively positioned, the position of the follow-
ing box is calculated as though B were not offset. The effect of 'position:relative’

7 Jun 2011 17:58

Visual formatting model

on table-row-group, table-header-group, table-footer-group, table-row,
table-column-group, table-column, table-cell, and table-caption elements is
undefined.

absolute
The box’s position (and possibly size) is specified with the [top’, [right], [bottom,
and properties. These properties specify offsets with respect to the box’s
[containing block [p. 128] . Absolutely positioned boxes are taken out of the
normal flow. This means they have no impact on the layout of later siblings.
Also, though |absolutely positioned|[p. 151] boxes have margins, they do not
[p. 117] with any other margins.

fixed
The box’s position is calculated according to the 'absolute’ model, but in addi-
tion, the box isffixed| [p. 151] with respect to some reference. As with the 'abso-
lute’ model, the box’s margins do not collapse with any other margins. In the
case of handheld, projection, screen, tty, and tv media types, the box is fixed
with respect to the [viewpor [p. 128] and does not move when scrolled. In the
case of the print media type, the box is rendered on every page, and is fixed
with respect to the page box, even if the page is seen through afviewpord
[p. 128] (in the case of a print-preview, for example). For other media types, the
presentation is undefined. Authors may wish to specify ‘fixed’ in a media-depen-
dent way. For instance, an author may want a box to remain at the top of the
[p. 128] on the screen, but not at the top of each printed page. The two
specifications may be separated by using an[@media rule][p. 108] , as in:

Example(s):

@media screen {
h1#first { position: fixed }

}
@media print {

h1#first { position: static }
}

UAs must not paginate the content of fixed boxes. Note that UAs may print
invisible content in other ways. See['Content outside the page box| [p. 227] in
chapter 13.

User agents may treat position as ’static’ on the root element.

9.3.2 Box offsets: [top’], [right’], [bottom’], [left]]

An element is said to be positioned if its [position] property has a value other than
'static’. Positioned elements generate positioned boxes, laid out according to four
properties:

'top’

7 Jun 2011 17:58 135

Value:

Initial:

Applies to:
Inherited:
Percentages:
Media:
Computed value:

Visual formatting model

[<length>] | [<percentage>] | auto |

auto

positioned elements

no

refer to height of containing block

if specified as a length, the corresponding absolute length; if

specified as a percentage, the specified value; otherwise,
‘auto’.

This property specifies how far an[absolutely positioned|[p. 151] box’s top margin
edge is offset below the top edge of the box’s|containing block| [p. 128] . For rela-
tively positioned boxes, the offset is with respect to the top edges of the box itself
(i.e., the box is given a position in the normal flow, then offset from that position
according to these properties).

right’

Value:

Initial:

Applies to:
Inherited:
Percentages:
Media:
Computed value:

[<length>] | Kpercentage>] | auto |
auto

positioned elements

no

refer to width of containing block

if specified as a length, the corresponding absolute length; if

specified as a percentage, the specified value; otherwise,
‘auto’.

Like 'top’, but specifies how far a box’s right margin edge is offset to the left of the
right edge of the box’s [containing block|[p. 128] . For relatively positioned boxes, the
offset is with respect to the right edge of the box itself.

'bottom’

136

Value:

Initial:

Applies to:
Inherited:
Percentages:
Media:
Computed value:

[<length>] | <Kpercentage>] | auto |

auto

positioned elements

no

refer to height of containing block

if specified as a length, the corresponding absolute length; if

specified as a percentage, the specified value; otherwise,
‘auto’.

7 Jun 2011 17:58

Visual formatting model

Like 'top’, but specifies how far a box’s bottom margin edge is offset above the
bottom of the box’s|containing block| [p. 128] . For relatively positioned boxes, the
offset is with respect to the bottom edge of the box itself.

left’
Value: [<length>] | Kpercentage>| | auto |
Initial: auto
Applies to: positioned elements
Inherited: no
Percentages: refer to width of containing block
Media:

Computed value: if specified as a length, the corresponding absolute length; if
specified as a percentage, the specified value; otherwise,
‘auto’.

Like 'top’, but specifies how far a box’s left margin edge is offset to the right of the
left edge of the box’s|containing block| [p. 128] . For relatively positioned boxes, the
offset is with respect to the left edge of the box itself.

The values for the four properties have the following meanings:

The offset is a fixed distance from the reference edge. Negative values are
allowed.

l<percentage> |
The offset is a percentage of the containing block’s width (for [left] or [right)) or
height (for [top’]and[bottom’). Negative values are allowed.

auto
For non-replaced elements, the effect of this value depends on which of related
properties have the value 'auto’ as well. See the sections on the [width] [p. 177]
and [height] [p. 186] of [absolutely positioned][p. 151] , non-replaced elements for
details. For replaced elements, the effect of this value depends only on the
intrinsic dimensions of the replaced content. See the sections on the [width]
[p. 179] and [height] [p. 187] of absolutely positioned, replaced elements for
details.

9.4 Normal flow

Boxes in the normal flow belong to a formatting context, which may be block or
inline, but not both simultaneously. |Block-level [p. 129] boxes participate in a|block

fformatting] [p. 138] context. [Inline-level boxesg| [p. 131] participate in an|inline format]
fting] [p. 138] context.

7 Jun 2011 17:58 137

Visual formatting model

9.4.1 Block formatting contexts

Floats, absolutely positioned elements, block containers (such as inline-blocks,
table-cells, and table-captions) that are not block boxes, and block boxes with 'over-
flow’ other than 'visible’ (except when that value has been propagated to the view-
port) establish new block formatting contexts for their contents.

In a block formatting context, boxes are laid out one after the other, vertically,
beginning at the top of a containing block. The vertical distance between two sibling
boxes is determined by the [margin] properties. Vertical margins between adjacent
block-level boxes in a block formatting context|[collapse] [p. 117] .

In a block formatting context, each box’s left outer edge touches the left edge of
the containing block (for right-to-left formatting, right edges touch). This is true even
in the presence of floats (although a box’s line boxes may shrink due to the floats),
unless the box establishes a new block formatting context (in which case the box
itself[may become narrower|[p. 142] due to the floats).

For information about page breaks in paged media, please consult the section on
[allowed page breaks|[p. 229] .

9.4.2 Inline formatting contexts

In an inline formatting context, boxes are laid out horizontally, one after the other,
beginning at the top of a containing block. Horizontal margins, borders, and padding
are respected between these boxes. The boxes may be aligned vertically in different
ways: their bottoms or tops may be aligned, or the baselines of text within them may
be aligned. The rectangular area that contains the boxes that form a line is called a
line box.

The width of a line box is determined by a|containing block| [p. 128] and the pres-
ence of floats. The height of a line box is determined by the rules given in the section
onlline height calculations|[p. 189] .

A line box is always tall enough for all of the boxes it contains. However, it may be
taller than the tallest box it contains (if, for example, boxes are aligned so that base-
lines line up). When the height of a box B is less than the height of the line box
containing it, the vertical alignment of B within the line box is determined by the
property. When several inline-level boxes cannot fit horizontally within
a single line box, they are distributed among two or more vertically-stacked line
boxes. Thus, a paragraph is a vertical stack of line boxes. Line boxes are stacked
with no vertical separation (except as specified elsewhere) and they never overlap.

In general, the left edge of a line box touches the left edge of its containing block
and the right edge touches the right edge of its containing block. However, floating
boxes may come between the containing block edge and the line box edge. Thus,
although line boxes in the same inline formatting context generally have the same
width (that of the containing block), they may vary in width if available horizontal
space is reduced due to [floats|[p. 142] . Line boxes in the same inline formatting
context generally vary in height (e.g., one line might contain a tall image while the

138 7 Jun 2011 17:58

Visual formatting model

others contain only text).

When the total width of the inline-level boxes on a line is less than the width of the
line box containing them, their horizontal distribution within the line box is determined
by the property. If that property has the value *justify’, the user agent may
stretch spaces and words in inline boxes (but not inline-table and inline-block boxes)
as well.

When an inline box exceeds the width of a line box, it is split into several boxes
and these boxes are distributed across several line boxes. If an inline box cannot be
split (e.g., if the inline box contains a single character, or language specific word
breaking rules disallow a break within the inline box, or if the inline box is affected by
a white-space value of nowrap or pre), then the inline box overflows the line box.

When an inline box is split, margins, borders, and padding have no visual effect
where the split occurs (or at any split, when there are several).

Inline boxes may also be split into several boxes within the same line box due to
[pidirectional text processing] [p. 165] .

Line boxes are created as needed to hold inline-level content within an inline
formatting context. Line boxes that contain no text, no|preserved white space)|
[p. 264] no inline elements with non-zero margins, padding, or borders, and no other
[p. 134] content (such as images, inline blocks or inline tables), and do not
end with a preserved newline must be treated as zero-height line boxes for the
purposes of determining the positions of any elements inside of them, and must be
treated as not existing for any other purpose.

Here is an example of inline box construction. The following paragraph (created by
the HTML block-level element P) contains anonymous text interspersed with the
elements EM and STRONG:

<P>Several emphasized words appear
<STRONG=>in this sentence, dear.</P>

The P element generates a block box that contains five inline boxes, three of
which are anonymous:

Anonymous: "Several"

EM: "emphasized words"
Anonymous: "appear"
STRONG: "in this"
Anonymous: "sentence, dear."

To format the paragraph, the user agent flows the five boxes into line boxes. In
this example, the box generated for the P element establishes the containing block
for the line boxes. If the containing block is sufficiently wide, all the inline boxes will
fit into a single line box:

7 Jun 2011 17:58 139

Visual formatting model

Several enphasi zed words appear in this sentence, dear.

If not, the inline boxes will be split up and distributed across several line boxes.
The previous paragraph might be split as follows:

Several enphasi zed wor ds appear
i n this sentence, dear.

or like this:

Several enphasi zed
wor ds appear in this
sentence, dear.

In the previous example, the EM box was split into two EM boxes (call them
"splitl" and "split2"). Margins, borders, padding, or text decorations have no visible
effect after splitl or before split2.

Consider the following example:

<IDOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN">
<HTML>
<HEAD>
<TITLE>Example of inline flow on several lines</TITLE>
<STYLE type="text/css">
EM {
padding: 2px;
margin: lem;
border-width: medium;
border-style: dashed;
line-height: 2.4em;

}
</STYLE>
</HEAD>
<BODY>
<P>Several emphasized words appear here.</P>
</BODY>
</HTML>

Depending on the width of the P, the boxes may be distributed as follows:

Several LempFasted i $ Line height 2.4em

wordsl appear here.

Width of paragraph

® The margin is inserted before "emphasized" and after "words".

® The padding is inserted before, above, and below "emphasized" and after,
above, and below "words". A dashed border is rendered on three sides in each
case.

140 7 Jun 2011 17:58

Visual formatting model

9.4.3 Relative positioning

Once a box has been laid out according to the [normal flow] [p. 137] or floated, it may
be shifted relative to this position. This is called relative positioning. Offsetting a box
(B1) in this way has no effect on the box (B2) that follows: B2 is given a position as if
B1 were not offset and B2 is not re-positioned after B1's offset is applied. This
implies that relative positioning may cause boxes to overlap. However, if relative
positioning causes an 'overflow:auto’ or 'overflow:scroll’ box to have overflow, the
UA must allow the user to access this content (at its offset position), which, through
the creation of scrollbars, may affect layout.

A relatively positioned box keeps its normal flow size, including line breaks and the
space originally reserved for it. The section on|containing blocks| [p. 128] explains
when a relatively positioned box establishes a new containing block.

For relatively positioned elements, 'left’ and 'right’ move the box(es) horizontally,
without changing their size. 'Left’ moves the boxes to the right, and 'right’ moves
them to the left. Since boxes are not split or stretched as a result of "left’ or 'right’, the
used values are always: left = -right.

If both "left’ and 'right’ are "auto’ (their initial values), the used values are '0’ (i.e.,
the boxes stay in their original position).

If "left’ is "auto’, its used value is minus the value of 'right’ (i.e., the boxes move to
the left by the value of 'right’).

If 'right’ is specified as 'auto’, its used value is minus the value of 'left’.

If neither ’left’ nor 'right’ is "auto’, the position is over-constrained, and one of them
has to be ignored. If the 'direction’ property of the containing block is ’ltr’, the value of
‘left’ wins and 'right’ becomes -’left’. If 'direction’ of the containing block is 'rtl’, 'right’
wins and ’'left’ is ignored.

Example(s):
Example. The following three rules are equivalent:

div.a8 { position: relative; direction: Itr; left: -1em,; right: auto }
div.a8 { position: relative; direction: Itr; left: auto; right: 1em }
div.a8 { position: relative; direction: Itr; left: -1em; right: 5em }

The 'top’ and 'bottom’ properties move relatively positioned element(s) up or down
without changing their size. 'Top’ moves the boxes down, and 'bottom’ moves them
up. Since boxes are not split or stretched as a result of 'top’ or bottom’, the used
values are always: top = -bottom. If both are 'auto’, their used values are both '0’. If
one of them is 'auto’, it becomes the negative of the other. If neither is 'auto’,
'bottom’ is ignored (i.e., the used value of 'bottom’ will be minus the value of 'top’).

Note. Dynamic movement of relatively positioned boxes can produce animation
effects in scripting environments (see also the[visibility] property). Although relative
positioning may be used as a form of superscripting and subscripting, the line height
is not automatically adjusted to take the positioning into consideration. See the
description ofline height calculations|[p. 189] for more information.

7 Jun 2011 17:58 141

Visual formatting model

Examples of relative positioning are provided in the section|comparing normalf
[flow, floats, and absolute positioning|[p. 154] .

9.5 Floats

A float is a box that is shifted to the left or right on the current line. The most interest-
ing characteristic of a float (or "floated" or "floating" box) is that content may flow
along its side (or be prohibited from doing so by the [clear] property). Content flows
down the right side of a left-floated box and down the left side of a right-floated box.
The following is an introduction to float positioning and content flow; the exact|rules]
[p. 147] governing float behavior are given in the description of the [float] property.

A floated box is shifted to the left or right until its outer edge touches the contain-
ing block edge or the outer edge of another float. If there is a line box, the outer top
of the floated box is aligned with the top of the current line box.

If there is not enough horizontal room for the float, it is shifted downward until
either it fits or there are no more floats present.

Since a float is not in the flow, non-positioned block boxes created before and
after the float box flow vertically as if the float did not exist. However, the current and
subsequent line boxes created next to the float are shortened as necessary to make
room for the margin box of the float.

A line box is next to a float when there exists a vertical position that satisfies all of
these four conditions: (a) at or below the top of the line box, (b) at or above the
bottom of the line box, (c) below the top margin edge of the float, and (d) above the
bottom margin edge of the float.

Note: this means that floats with zero outer height or negative outer height do not
shorten line boxes.

If a shortened line box is too small to contain any content, then the line box is
shifted downward (and its width recomputed) until either some content fits or there
are no more floats present. Any content in the current line before a floated box is
reflowed in the same line on the other side of the float. In other words, if inline-level
boxes are placed on the line before a left float is encountered that fits in the remain-
ing line box space, the left float is placed on that line, aligned with the top of the line
box, and then the inline-level boxes already on the line are moved accordingly to the
right of the float (the right being the other side of the left float) and vice versa for rtl
and right floats.

The border box of a table, a block-level replaced element, or an element in the
normal flow that establishes a new |block formatting context [p. 138] (such as an
element with 'overflow’ other than ’visible’) must not overlap the margin box of any
floats in the same block formatting context as the element itself. If necessary, imple-
mentations should clear the said element by placing it below any preceding floats,
but may place it adjacent to such floats if there is sufficient space. They may even
make the border box of said element narrower than defined by|section 10.3.3]

[p. 176] CSS2 does not define when a UA may put said element next to the float or

142 7 Jun 2011 17:58

Visual formatting model

by how much said element may become narrower.
Example(s):

Example. In the following document fragment, the containing block is too narrow
to contain the content next to the float, so the content gets moved to below the floats
where it is aligned in the line box according to the text-align property.

p { width: 10em; border: solid aqua; }
span { float: left; width: 5em; height: 5em; border: solid blue; }

<p>

Supercalifragilisticexpialidocious
</p>

This fragment might look like this:

Supercalifragilisticexpialidocious

Several floats may be adjacent, and this model also applies to adjacent floats in
the same line.

Example(s):

The following rule floats all IMG boxes with class="icon" to the left (and sets
the left margin to °0’):

img.icon {
float: left;
margin-left: O;

}

Consider the following HTML source and style sheet:

<IDOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN">
<HTML>
<HEAD>
<TITLE>Float example</TITLE>
<STYLE type="text/css">
IMG { float: left }
BODY, P, IMG { margin: 2em }
</STYLE>
</HEAD>

7 Jun 2011 17:58 143

Visual formatting model

<BODY>
<P>

Some sample text that has no other...
</BODY>
</HTML>

The IMG box is floated to the left. The content that follows is formatted to the right
of the float, starting on the same line as the float. The line boxes to the right of the
float are shortened due to the float’s presence, but resume their "normal” width (that
of the containing block established by the P element) after the float. This document

might be formatted as:

max (BODY margin, P margin)

CB) P | IMG margins—= Some sample text Pl B
D] . that has no other o)
y |M i purpose than to m| D
a o show how floating aly
mlr e elements are moved r
a |7 “2 to the side of the g| m
r | n S parent element I a
g S while honoring npr
' margins, borders, Ig
n and padding. Note n

how adjacent vertical margins are collapsed
between non-floating block-level elements.

\/—\/

Formatting would have been exactly the same if the document had been:

<BODY>
<P>Some sample text

that has no other...
</BODY>

because the content to the left of the float is displaced by the float and reflowed
down its right side.

As stated in [p. 117], the margins of floating boxes never [collapse]

[p. 117] with margins of adjacent boxes. Thus, in the previous example, vertical
margins do not[collapse] [p. 117] between the P box and the floated IMG box.

The contents of floats are stacked as if floats generated new stacking contexts,
except that any positioned elements and elements that actually create new stacking
contexts take part in the float's parent stacking context. A float can overlap other
boxes in the normal flow (e.g., when a normal flow box next to a float has negative
margins). When this happens, floats are rendered in front of non-positioned in-flow
blocks, but behind in-flow inlines.

144 7 Jun 2011 17:58

Visual formatting model

Example(s):

Here is another illustration, showing what happens when a float overlaps borders
of elements in the normal flow.

image margin paragraph margin
paragraph border f
N\ . paragraph padding
L. T B, et T

i | -
L N

Some sample texd in the first paragraph. I has a flaafing :
' - Irage thal was righl about here (X) In the
source. However, the image is so large thal |

The sacond paragraph s therelore also

A alfecied, Any inline benes in it are "pushaed
-~ aside.* as thay are [orblddan fram coming
inside the area dalimited by ihe flealing image’s margins
Mota thal the paragraph boxes are siill rectangular, bul
their borders and backgrounds are "dipped” or iflemrupled
by the floaling Image.

A floating image obscures borders of block boxes it overlaps.

The following example illustrates the use of the [clear] property to prevent content
from flowing next to a float.

Example(s):
Assuming a rule such as this:

p { clear: left }

formatting might look like this:

7 Jun 2011 17:58 145

Visual formatting model

image margin paragraph margin
: paragraph border
paragraph padding
'-, 3 b= ’ i a
‘. \ I

Snrna s-a.mpﬂa text in ths ﬁrst parﬂgraph It has a ﬂnaﬂng
i r imag-u that was right about here (X) in the
,"(source. However, the Image Is so large that

It extends below the text of this paragraph.
B .

. This paragraph has its ‘clear’ propery set to ‘left” =o

i that it will be forced to be below any Isfi-fioating Images. -
. This Is done by adding "dearance” fo its fop margin.

;

Both paragraphs have set 'clear: left’, which causes the second paragraph to be
"pushed down" to a position below the float — "clearance" is added above its top
margin to accomplish this (see the property).

b

9.5.1 Positioning the float: the property

'float’
Value: left | right | none |[inherit
Initial: none
Applies to: all, but see[9.7][p. 153]
Inherited: no
Percentages: N/A
Media:

Computed value: as specified

This property specifies whether a box should float to the left, right, or not at all. It
may be set for any element, but only applies to elements that generate boxes that
are notjabsolutely positioned|[p. 151] . The values of this property have the following
meanings:

left
The element generates a[block] [p. 129] box that is floated to the left. Content
flows on the right side of the box, starting at the top (subject to the [clear] prop-
erty).

right
Similar to 'left’, except the box is floated to the right, and content flows on the
left side of the box, starting at the top.

146 7 Jun 2011 17:58

Visual formatting model

none
The box is not floated.

User agents may treat float as 'none’ on the root element.

Here are the precise rules that govern the behavior of floats:

1. The leftfouter edge][p. 112] of a left-floating box may not be to the left of the left
edge of its|containing block|[p. 128] . An analogous rule holds for right-floating
elements.

2. If the current box is left-floating, and there are any left-floating boxes generated
by elements earlier in the source document, then for each such earlier box,
either the left[outer edge] [p. 112] of the current box must be to the right of the
right[outer edge] [p. 112] of the earlier box, or its top must be lower than the
bottom of the earlier box. Analogous rules hold for right-floating boxes.

3. The right[outer edge][p. 112] of a left-floating box may not be to the right of the
leftfouter edge] [p. 112] of any right-floating box that is next to it. Analogous rules
hold for right-floating elements.

4. A floating box’souter top| [p. 112] may not be higher than the top of its [contain]
[p. 128] . When the float occurs between two collapsing margins, the
float is positioned as if it had an otherwise empty [anonymous block parent
[p. 129] taking part in the flow. The position of such a parent is defined by [the]
[rules] [p. 118] in the section on margin collapsing.

5. The[outer top][p. 112] of a floating box may not be higher than the outer top of
any [blocK| [p. 129] or [floated] [p. 142] box generated by an element earlier in the
source document.

6. Thelouter top|[p. 112] of an element’s floating box may not be higher than the
top of any [line-box [p. 138] containing a box generated by an element earlier in
the source document.

7. A left-floating box that has another left-floating box to its left may not have its

right outer edge to the right of its containing block’s right edge. (Loosely: a left

float may not stick out at the right edge, unless it is already as far to the left as
possible.) An analogous rule holds for right-floating elements.

A floating box must be placed as high as possible.

9. A left-floating box must be put as far to the left as possible, a right-floating box
as far to the right as possible. A higher position is preferred over one that is
further to the left/right.

©

But in CSS 2.1, if, within the block formatting context, there is an in-flow negative
vertical margin such that the float's position is above the position it would be at were
all such negative margins set to zero, the position of the float is undefined.

References to other elements in these rules refer only to other elements in the
same [block formatting context| [p. 138] as the float.

Example(s):

7 Jun 2011 17:58 147

Visual formatting model

This HTML fragment results in the b floating to the right.

<P>ab</P>

If the P element’s width is enough, the a and the b will be side by side. It might
look like this:

a b

Sp

9.5.2 Controlling flow next to floats: the property

‘clear’

Value: none | left | right | both | inheri
Initial: none

Applies to: block-level elements

Inherited: no

Percentages: N/A

Media:

Computed value: as specified

This property indicates which sides of an element’s box(es) may not be adjacent
to an earlier floating box. The 'clear’ property does not consider floats inside the
element itself or in other [block formatting contexts.|[p. 138]

Values have the following meanings when applied to non-floating block-level
boxes:

left
Requires that the top border edge of the box be below the bottom outer edge of
any left-floating boxes that resulted from elements earlier in the source docu-
ment.

right
Requires that the top border edge of the box be below the bottom outer edge of
any right-floating boxes that resulted from elements earlier in the source docu-
ment.

both
Requires that the top border edge of the box be below the bottom outer edge of
any right-floating and left-floating boxes that resulted from elements earlier in
the source document.

none
No constraint on the box’s position with respect to floats.

148 7 Jun 2011 17:58

Visual formatting model

Values other than 'none’ potentially introduce clearance. Clearance inhibits margin
collapsing and acts as spacing above the margin-top of an element. It is used to
push the element vertically past the float.

Computing the clearance of an element on which 'clear’ is set is done by first
determining the hypothetical position of the element’s top border edge. This position
is where the actual top border edge would have been if the element’s 'clear’ property
had been 'none’.

If this hypothetical position of the element’s top border edge is not past the rele-
vant floats, then clearance is introduced, and margins collapse according to the rules
in 8.3.1.

Then the amount of clearance is set to the greater of:

1. The amount necessary to place the border edge of the block even with the
bottom outer edge of the lowest float that is to be cleared.

2. The amount necessary to place the top border edge of the block at its hypotheti-
cal position.

Alternatively, clearance is set exactly to the amount necessary to place the border
edge of the block even with the bottom outer edge of the lowest float that is to be
cleared.

Note: Both behaviors are allowed pending evaluation of their compatibility with
existing Web content. A future CSS specification will require either one or the other.

Note: The clearance can be negative or zero.
Example(s):

Example 1. Assume (for the sake of simplicity), that we have just three boxes, in
this order: block B1 with a bottom margin of M1 (B1 has no children and no padding
or border), floating block F with a height H, and block B2 with a top margin of M2 (no
padding or border, no children). B2 has 'clear’ set to 'both’. We also assume B2 is
not empty.

Without considering the 'clear’ property on B2, we have the situation in the
diagram below. The margins of B1 and B2 collapse. Let’'s say the bottom border
edge of Blis aty = 0, then the top of F is at y = M1, the top border edge of B2 is at y
= max(M1,M2), and the bottom of Fis aty = M1 + H.

Float F extends into the margin above M2.
We also assume that B2 is not below F, i.e., we are in the situation described in
the spec where we need to add clearance. That means:

max(M1,M2) < M1 + H

We need to compute clearance C twice, C1 and C2, and keep the greater of the
two: C = max(C1,C2). The first way is to put the top of B2 flush with the bottom of F,
i.e., aty = M1 + H. That means, because the margins no longer collapse with a
clearance between them:

7 Jun 2011 17:58 149

Visual formatting model

bottom of F = top border edge of B2 []
M1+H=M1+Cl+M2[]
Cl=M1+H-M1-M2
=H-M2
The second computation is to keep the top of B2 where it is, i.e., aty =
max(M1,M2). That means:
max(M1,M2) =M1 + C2 + M2 []
C2 = max(M1,M2) - M1 - M2

We assumed that max(M1,M2) < M1 + H, which implies

C2=max(M1,M2)-M1-M2<M1+H-M1-M2=H-M2[]
C2<H-M2

And, as C1 = H - M2, it follows that
C2<cC1

and hence
C=max(C1,C2)=C1

Example(s):

Example 2. An example of negative clearance is this situation, in which the clear-
ance is -1lem. (Assume none of the elements have borders or padding):

<p style=" margi n-bottom 4eni>
First paragraph.

<pstyle=" float: left; height: 2em margin: 0">
Floating paragraph.

<pstyle=" clear: left; margin-top: 3en>
Last paragraph.

Explanation: Without the 'clear’, the first and last paragraphs’ margins would
collapse and the last paragraph’s top border edge would be flush with the top of the
floating paragraph. But the 'clear’ requires the top border edge to be below the float,
i.e., 2em lower. This means that clearance must be introduced. Accordingly, the
margins no longer collapse and the amount of clearance is set so that clearance +
margin-top = 2em, i.e., clearance = 2em - margin-top = 2em - 3em = -lem.

When the property is set on floating elements, it results in a modification of the
[p. 147] for positioning the float. An extra constraint (#10) is added:

150 7 Jun 2011 17:58

Visual formatting model

e The topfouter edge] [p. 112] of the float must be below the bottom outer edge of
all earlier left-floating boxes (in the case of 'clear: left’), or all earlier right-floating
boxes (in the case of 'clear: right’), or both ('clear: both’).

Note. This property japplied to all elements in CSS1|[p. ??] . Implementations may
therefore have supported this property on all elements. In CSS2 and CSS 2.1 the
‘clear’ property only applies to block-level elements. Therefore authors should only
use this property on block-level elements. If an implementation does support clear
on inline elements, rather than setting a clearance as explained above, the imple-
mentation should force a break and effectively insert one or more empty line boxes
(or shifting the new line box downward as described in[section 9.5 [p. 142]) to move
the top of the cleared inline’s line box to below the respective floating box(es).

9.6 Absolute positioning

In the absolute positioning model, a box is explicitly offset with respect to its contain-
ing block. It is removed from the normal flow entirely (it has no impact on later
siblings). An absolutely positioned box establishes a new containing block for normal
flow children and absolutely (but not fixed) positioned descendants. However, the
contents of an absolutely positioned element do not flow around any other boxes.
They may obscure the contents of another box (or be obscured themselves),

depending on the [p. 164] of the overlapping boxes.

References in this specification to an absolutely positioned element (or its box)
imply that the element’s[position] property has the value 'absolute’ or 'fixed'.

9.6.1 Fixed positioning

Fixed positioning is a subcategory of absolute positioning. The only difference is that
for a fixed positioned box, the containing block is established by the [viewporf [p. 128]
. For|continuous medial [p. 110] , fixed boxes do not move when the document is
scrolled. In this respect, they are similar to[fixed background images|[p. 234] . For
[p. 223] , boxes with fixed positions are repeated on every page. This
is useful for placing, for instance, a signature at the bottom of each page. Boxes with
fixed position that are larger than the page area are clipped. Parts of the fixed posi-
tion box that are not visible in the initial containing block will not print.

Authors may use fixed positioning to create frame-like presentations. Consider the
following frame layout:

7 Jun 2011 17:58 151

<IDOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN">

Visual formatting model

header 15%
S
i
d
€ main
b
a
r
=10em =
footer 100px

<HTML>

152

<HEAD>

<TITLE>A frame document with CSS 2.1</TITLE>
<STYLE type="text/css" media="screen">

BODY { height: 8.5in } /* Required for percentage heights below */

#header {

position: fixed,;

width: 100%;
height: 15%;
top: O;
right: O;
bottom: auto;
left: O;

}

#sidebar {

position: fixed,;

width: 10em;
height: auto;
top: 15%;
right: auto;

bottom: 100px;

left: O;

}

#main {
position: fixed,;
width: auto;
height: auto;
top: 15%;
right: O;

bottom: 100px;

left: 10em;

This might be achieved with the following HTML document and style rules:

7 Jun 2011 17:58

Visual formatting model

}
#footer {

position: fixed,;
width: 100%;
height: 100px;
top: auto;
right: O;
bottom: 0;

left: O;

}
</STYLE>
</HEAD>
<BODY>
<DIV id="header"> ... </DIV>
<DIV id="sidebar"> ... </DIV>
<DIV id="main"> ... </DIV>
<DIV id="footer"> ... </DIV>
</BODY>

</HTML>

9.

7 Relationships between 'display’, 'position’, and

"float’

The three properties that affect box generation and layout —[display}, [position’, and
‘float]— interact as follows:

1.

2.

3.

4.

If[display]] has the value 'none’, then [position] and [float] do not apply. In this
case, the element generates no box.

Otherwise, if[position] has the value 'absolute’ or ‘fixed’, the box is absolutely
positioned, the computed value of[float]is 'none’, and display is set according to
the table below. The position of the box will be determined by the [top], [right},
[bottom] and [left] properties and the box’s containing block.

Otherwise, if 'float’ has a value other than 'none’, the box is floated and 'display’
is set according to the table below.

Otherwise, if the element is the root element, 'display’ is set according to the
table below, except that it is undefined in CSS 2.1 whether a specified value of
'list-item’ becomes a computed value of 'block’ or 'list-item’.

. Otherwise, the remaining property values apply as specified.

7 Jun 2011 17:58 153

Visual formatting model

Computed

Specified value
value

inline-table table

inline, table-row-group, table-column, table-column-group,
table-header-group, table-footer-group, table-row, table-cell, block
table-caption, inline-block

same as

others specified

9.8 Comparison of normal flow, floats, and absolute
positioning

To illustrate the differences between normal flow, relative positioning, floats, and
absolute positioning, we provide a series of examples based on the following HTML.:

<IDOCTYPE HTML PUBLIC "-//W3C//[DTD HTML 4.01//EN">
<HTML>
<HEAD>
<TITLE>Comparison of positioning schemes</TITLE>
</HEAD>
<BODY>
<P>Beginning of body contents.
 Start of outer contents.
 Inner contents.
End of outer contents.
End of body contents.
</P>
</BODY>
</HTML>

In this document, we assume the following rules:

body { display: block; font-size:12px; line-height: 200%;
width: 400px; height: 400px }

p {display: block}

span { display: inline }

The final positions of boxes generated by the outer and inner elements vary in
each example. In each illustration, the numbers to the left of the illustration indicate

the [p. 137] position of the double-spaced (for clarity) lines.

Note. The diagrams in this section are illustrative and not to scale. They are meant
to highlight the differences between the various positioning schemes in CSS 2.1, and
are not intended to be reference renderings of the examples given.

154 7 Jun 2011 17:58

Visual formatting model

9.8.1 Normal flow

Consider the following CSS declarations for outer and inner that do not alter the

[p. 137] of boxes:

#outer { color: red }
#inner { color: blue }

The P element contains all inline content: |anonymous inline text [p. 132] and two
SPAN elements. Therefore, all of the content will be laid out in an inline formatting
context, within a containing block established by the P element, producing some-
thing like:

(0,0) Document Window (0, 400)

1 | Beginning of body contents. Start

24 px
2 | of outer contents. Inner contents.

3 | End of outer contents. End of body

4 | contents.

8
(400, 0) (400, 400)

9.8.2 Relative positioning

To see the effect of relative positioning| [p. 141] , we specify:

#outer { position: relative; top: -12px; color: red }
#inner { position: relative; top: 12px; color: blue }

Text flows normally up to the outer element. The outer text is then flowed into its
normal flow position and dimensions at the end of line 1. Then, the inline boxes
containing the text (distributed over three lines) are shifted as a unit by ’-12px’

7 Jun 2011 17:58 155

Visual formatting model

(upwards).

The contents of inner, as a child of outer, would normally flow immediately after
the words "of outer contents" (on line 1.5). However, the inner contents are them-
selves offset relative to the outer contents by '12px’ (downwards), back to their origi-
nal position on line 2.

Note that the content following outer is not affected by the relative positioning of
outer.

(0,0) Document Window (0, 400)
Start
1 | Beginning of body contents. ﬁ 12px
24 px of outer contents.
2 = +12px¢ Inner contents.
End of outer contents.
3 End of body
4 | contents.
5 -
6 -
7 -
8
(400, 0) (400, 400)

Note also that had the offset of outer been -24px’, the text of outer and the body
text would have overlapped.

9.8.3 Floating a box

Now consider the effect of [p. 142] the inner element’s text to the right by
means of the following rules:

#outer { color: red }
#inner { float: right; width: 130px; color: blue }

Text flows normally up to the inner box, which is pulled out of the flow and floated
to the right margin (its has been assigned explicitly). Line boxes to the left of
the float are shortened, and the document’s remaining text flows into them.

156 7 Jun 2011 17:58

24 px[

Visual formatting model

(0,0) Document Window (0, 400)
1 | Beginning of body contefnits.i Start -
|
2 | of outer contents. End | Inner |
| |
3 | of outer contents. End |contents. |
width= 130 px
4 | of body contents.
5 _
6 _
7 _
8
(400, 0) (400, 400)

To show the effect of the [clear] property, we add a sibling element to the example:

<IDOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN">

<HTML>
<HEAD>

<TITLE>Comparison of positioning schemes II</TITLE>

</HEAD>
<BODY>

<P>Beginning of body contents.
 Start of outer contents.
 Inner contents.
 Sibling contents.
End of outer contents.
End of body contents.

</P>
</BODY>
</HTML>

The following rules:

#inner { float: right; width: 130px; color: blue }
#sibling { color: red }

7 Jun 2011 17:58

157

Visual formatting model

cause the inner box to float to the right as before and the document’s remaining
text to flow into the vacated space:

24 px[

(0,0) Document Window (0, 400)

1 | Beginning of body conteptg Start
| |

2 | of outer contents. Inner |

| Ot] | |

3 | Sibling contents. End @Qteﬂth
width= 130 px

4 | of outer contents. End of body

5 | contents.

6 _

7 _

8

(400, 0) (400, 400)

However, if the [clear] property on the sibling element is set to 'right’ (i.e., the
generated sibling box will not accept a position next to floating boxes to its right), the
sibling content begins to flow below the float:

#inner { float: right; width: 130px; color: blue }
#sibling { clear: right; color: red }

158

7 Jun 2011 17:58

Visual formatting model

(0,0) Document Window (0, 400)

1 | Beginning of body contents. Start

ri 2R
24 px[| |
2 | of outer contents. | Inner |

| |

3 | contents. |

width= 130 px

4 | Sibling contents. End of outer

5 | contents. End of body contents.

8
(400, 0) (400, 400)

9.8.4 Absolute positioning

Finally, we consider the effect of [absolute positioning|[p. 151] . Consider the follow-
ing CSS declarations for outer and inner:

#outer {
position: absolute;
top: 200px; left: 200pXx;
width: 200px;
color: red;

}

#inner { color: blue }

which cause the top of the outer box to be positioned with respect to its containing
block. The containing block for a positioned box is established by the nearest posi-
tioned ancestor (or, if none exists, the finitial containing blockl[p. 171] , as in our
example). The top side of the outer box is '200px’ below the top of the containing
block and the left side is '200px’ from the left side. The child box of outer is flowed
normally with respect to its parent.

7 Jun 2011 17:58 159

Visual formatting model

(0,0) Document Window (0, 400)
1 | Beginning of body contents. End of
24 px[
2 | body contents.
3
4 (200, 200)
o 7
|
> Start of outer |
|
6 contents. Inner |
|
v contents. End of
|
8 jouter contents. |
(400, 0) (400, 400)

The following example shows an absolutely positioned box that is a child of a rela-
tively positioned box. Although the parent outer box is not actually offset, setting its
property to 'relative’ means that its box may serve as the containing block
for positioned descendants. Since the outer box is an inline box that is split across
several lines, the first inline box’s top and left edges (depicted by thick dashed lines
in the illustration below) serve as references for[top] and [left] offsets.

#outer {
position: relative;
color: red

}

#inner {
position: absolute;
top: 200px; left: -100px;
height: 130px; width: 130px;
color: blue;

}

This results in something like the following:

160 7 Jun 2011 17:58

Visual formatting model

(0,0) Document Window (0, 400)

|
1 | Beginning of body contents. IStart

24 px
E 2 | of outer contents. End of outer

3 | contents. End of body contents.

4 (+200, -100)
| |
|
o ‘Inner height = 130px
|Contents. |
i — L |
width = 130 px
7
8
(400, 0) (400, 400)

If we do not position the outer box:

#outer { color: red }

#inner {
position: absolute;
top: 200px; left: -100px;
height: 130px; width: 130px;
color: blue;

}

the containing block for inner becomes the [initial containing block| [p. 171] (in our
example). The following illustration shows where the inner box would end up in this
case.

7 Jun 2011 17:58 161

Visual formatting model

(0,0) Document Window (0, 400)

1 | Beginning of body contents. Start

24 px
E 2 | of outer contents. End of outer

3 | contents. End of body contents.

(=100, 200)
B
Inner |
| |
‘Comenm+
B
77
8
(400, 0) (400, 400)

Relative and absolute positioning may be used to implement change bars, as
shown in the following example. The following fragment:

<P style="position: relative; margin-right: 10px; left: 10px;">

| used two red hyphens to serve as a change bar. They

will "float" to the left of the line containing THIS

--
word.</P>

might result in something like:

| used two red hyphens to serve

as a change bar. They will "float"

to the left of the line containing
——THIS word.

10px

162 7 Jun 2011 17:58

Visual formatting model

First, the paragraph (whose containing block sides are shown in the illustration) is
flowed normally. Then it is offset '10px’ from the left edge of the containing block
(thus, a right margin of '10px’ has been reserved in anticipation of the offset). The
two hyphens acting as change bars are taken out of the flow and positioned at the
current line (due to 'top: auto’), -1em’ from the left edge of its containing block
(established by the P in its final position). The result is that the change bars seem to
"float" to the left of the current line.

9.9 Layered presentation
9.9.1 Specifying the stack level: the property

'z-index’

Value: auto | [<integer>||[inherit
Initial: auto

Applies to: positioned elements
Inherited: no

Percentages: N/A

Media:

Computed value: as specified

For a positioned box, the [z-index] property specifies:

1. The stack level of the box in the current stacking context.
2. Whether the box establishes a stacking context.

Values have the following meanings:

This integer is the stack level of the generated box in the current stacking
context. The box also establishes a new stacking context.

auto
The stack level of the generated box in the current stacking context is 0. The
box does not establish a new stacking context unless it is the root element.

In this section, the expression "in front of" means closer to the user as the user
faces the screen.

In CSS 2.1, each box has a position in three dimensions. In addition to their hori-
zontal and vertical positions, boxes lie along a "z-axis" and are formatted one on top
of the other. Z-axis positions are particularly relevant when boxes overlap visually.
This section discusses how boxes may be positioned along the z-axis.

The order in which the rendering tree is painted onto the canvas is described in
terms of stacking contexts. Stacking contexts can contain further stacking contexts.
A stacking context is atomic from the point of view of its parent stacking context;

7 Jun 2011 17:58 163

Visual formatting model

boxes in other stacking contexts may not come between any of its boxes.

Each box belongs to one stacking context. Each positioned box in a given stacking
context has an integer stack level, which is its position on the z-axis relative other
stack levels within the same stacking context. Boxes with greater stack levels are
always formatted in front of boxes with lower stack levels. Boxes may have negative
stack levels. Boxes with the same stack level in a stacking context are stacked
back-to-front according to document tree order.

The root element forms the root stacking context. Other stacking contexts are
generated by any positioned element (including relatively positioned elements)
having a computed value of 'z-index’ other than 'auto’. Stacking contexts are not
necessarily related to containing blocks. In future levels of CSS, other properties
may introduce stacking contexts, for example [p. ??] '[CSS3COLOR]

Within each stacking context, the following layers are painted in back-to-front
order:

the background and borders of the element forming the stacking context.

the child stacking contexts with negative stack levels (most negative first).

the in-flow, non-inline-level, non-positioned descendants.

the non-positioned floats.

the in-flow, inline-level, non-positioned descendants, including inline tables and
inline blocks.

the child stacking contexts with stack level 0 and the positioned descendants
with stack level 0.

7. the child stacking contexts with positive stack levels (least positive first).

apsrwdE

o

Within each stacking context, positioned elements with stack level 0 (in layer 6),
non-positioned floats (layer 4), inline blocks (layer 5), and inline tables (layer 5), are
painted as if those elements themselves generated new stacking contexts, except
that their positioned descendants and any would-be child stacking contexts take part
in the current stacking context.

This painting order is applied recursively to each stacking context. This description
of stacking context painting order constitutes an overview of the detailed normative

definition in [p. 455]

In the following example, the stack levels of the boxes (named with their "id"
attributes) are: "text2"=0, "image"=1, "text3"=2, and "text1"=3. The "text2" stack level
is inherited from the root box. The others are specified with the [z-index] property.

<IDOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN">
<HTML>
<HEAD>
<TITLE>Z-order positioning</TITLE>
<STYLE type="text/css">
.pile {
position: absolute;
left: 2in;
top: 2in;

164 7 Jun 2011 17:58

Visual formatting model

width: 3in;
height: 3in;

}
</STYLE>
</HEAD>
<BODY>
<p>
<IMG id="image" class="pile"
src="butterfly.png" alt="A butterfly image"
style="z-index: 1">

<DIV id="text1" class="pile"
style="z-index: 3">
This text will overlay the butterfly image.
</DIV>

<DIV id="text2">
This text will be beneath everything.
</DIV>

<DIV id="text3" class="pile"
style="z-index: 2">
This text will underlay textl, but overlay the butterfly image
</DIV>
</BODY>
</HTML>

This example demonstrates the notion of transparency. The default behavior of
the background is to allow boxes behind it to be visible. In the example, each box
transparently overlays the boxes below it. This behavior can be overridden by using
one of the existing [background properties|[p. 234] .

9.10 Text direction: the [direction’l and [unicode-bidi’
properties

[p. 47] user agents that do not support bidirectional text may ignore the
[direction’land[unicode-bidi’| properties described in this section. This exception
includes UAs that render right-to-left characters simply because a font on the system
contains them but do not support the concept of right-to-left text direction.

The characters in certain scripts are written from right to left. In some documents,
in particular those written with the Arabic or Hebrew script, and in some
mixed-language contexts, text in a single (visually displayed) block may appear with
mixed directionality. This phenomenon is called bidirectionality, or "bidi" for short.

The Unicode standard ([JUNICODE] [UAX9]) defines a complex algorithm for
determining the proper directionality of text. The algorithm consists of an implicit part
based on character properties, as well as explicit controls for embeddings and over-
rides. CSS 2.1 relies on this algorithm to achieve proper bidirectional rendering. The
[direction’land [unicode-bidi| properties allow authors to specify how the elements
and attributes of a document language map to this algorithm.

7 Jun 2011 17:58 165

Visual formatting model

User agents that support bidirectional text must apply the Unicode bidirectional
algorithm to every sequence of inline-level boxes uninterrupted by a forced
[p. 2?]) break or block boundary. This sequence forms the "paragraph" unit
in the bidirectional algorithm. The paragraph embedding level is set according to the
value of the [direction] property of the containing block rather than by the heuristic
given in steps P2 and P3 of the Unicode algorithm.

Because the directionality of a text depends on the structure and semantics of the
document language, these properties should in most cases be used only by design-
ers of document type descriptions (DTDs), or authors of special documents. If a
default style sheet specifies these properties, authors and users should not specify
rules to override them.

The HTML 4 specification ([HTML4], section 8.2) defines bidirectionality behavior
for HTML elements. The style sheet rules that would achieve the bidi behavior speci-
fied in are given inthe sample style sheefl [p. 454] . The HTML 4 specifica-
tion also contains more information on bidirectionality issues.

‘direction’
Value: Itr | rtl | [inherid
Initial: Itr
Applies to: all elements, but see prose
Inherited: yes
Percentages: N/A
Media:

Computed value: as specified

This property specifies the base writing direction of blocks and the direction of
embeddings and overrides (see[unicode-bidi) for the Unicode bidirectional algo-
rithm. In addition, it specifies such things as the direction of ftable] [p. 269] column
layout, the direction of horizontal [overflow] [p. 195] , the position of an incomplete last
line in a block in case of 'text-align: justify’.

Values for this property have the following meanings:

Itr

Left-to-right direction.
rtl

Right-to-left direction.

For the [direction] property to affect reordering in inline elements, the

property’s value must be 'embed’ or 'override’.

Note. The[direction] property, when specified for table column elements, is not
inherited by cells in the column since columns are not the ancestors of the cells in
the document tree. Thus, CSS cannot easily capture the "dir" attribute inheritance
rules described in [HTML4], section 11.3.2.1.

166 7 Jun 2011 17:58

Visual formatting model

‘unicode-bidi’
Value: normal | embed | bidi-override | [inherit]
Initial: normal
Applies to: all elements, but see prose
Inherited: no
Percentages: N/A
Media:

Computed value: as specified

Values for this property have the following meanings:

normal
The element does not open an additional level of embedding with respect to the
bidirectional algorithm. For inline elements, implicit reordering works across
element boundaries.

embed
If the element is inline, this value opens an additional level of embedding with
respect to the bidirectional algorithm. The direction of this embedding level is
given by the[direction] property. Inside the element, reordering is done implicitly.
This corresponds to adding a LRE (U+202A; for "direction: Itr’) or RLE (U+202B;
for "direction: rtl") at the start of the element and a PDF (U+202C) at the end of
the element.

bidi-override
For inline elements this creates an override. For block container elements this
creates an override for inline-level descendants not within another block
container element. This means that inside the element, reordering is strictly in
sequence according to the[direction] property; the implicit part of the bidirec-
tional algorithm is ignored. This corresponds to adding a LRO (U+202D; for
"direction: Itr’) or RLO (U+202E; for 'direction: rtl’) at the start of the element or at
the start of each anonymous child block box, if any, and a PDF (U+202C) at the
end of the element.

The final order of characters in each block container is the same as if the bidi
control codes had been added as described above, markup had been stripped, and
the resulting character sequence had been passed to an implementation of the
Unicode bidirectional algorithm for plain text that produced the same line-breaks as
the styled text. In this process, replaced elements with 'display: inline’ are treated as
neutral characters, unless their [unicode-bidi] property has a value other than
'normal’, in which case they are treated as strong characters in the [direction] speci-
fied for the element. All other atomic inline-level boxes are treated as neutral charac-
ters always.

Please note that in order to be able to flow inline boxes in a uniform direction
(either entirely left-to-right or entirely right-to-left), more inline boxes (including
anonymous inline boxes) may have to be created, and some inline boxes may have
to be split up and reordered before flowing.

7 Jun 2011 17:58 167

Visual formatting model

Because the Unicode algorithm has a limit of 61 levels of embedding, care should
be taken not to use [unicode-bidi| with a value other than 'normal’ unless appropriate.
In particular, a value of ’inherit’ should be used with extreme caution. However, for
elements that are, in general, intended to be displayed as blocks, a setting of
‘'unicode-bidi: embed’ is preferred to keep the element together in case display is
changed to inline (see example below).

The following example shows an XML document with bidirectional text. It illus-
trates an important design principle: DTD designers should take bidi into account
both in the language proper (elements and attributes) and in any accompanying style
sheets. The style sheets should be designed so that bidi rules are separate from
other style rules. The bidi rules should not be overridden by other style sheets so
that the document language’s or DTD’s bidi behavior is preserved.

Example(s):

In this example, lowercase letters stand for inherently left-to-right characters and
uppercase letters represent inherently right-to-left characters:

<HEBREW>
<PAR>HEBREW1 HEBREW?2 english3 HEBREW4 HEBREW5</PAR>
<PAR>HEBREW6 <EMPH>HEBREW7</EMPH> HEBREW8</PAR>
</HEBREW>
<ENGLISH>
<PAR>english9 english10 english1l1 HEBREW12 HEBREW13</PAR>
<PAR>english14 english15 english16</PAR>
<PAR>english17 <HE-QUO>HEBREW18 english19 HEBREW20</HE-QUO></PAR>
</ENGLISH>

Since this is XML, the style sheet is responsible for setting the writing direction.
This is the style sheet:

/* Rules for bidi */
HEBREW, HE-QUO {direction: rtl; unicode-bidi: embed}
ENGLISH {direction: Itr; unicode-bidi: embed}

/* Rules for presentation */
HEBREW, ENGLISH, PAR {display: block}
EMPH {font-weight: bold}

The HEBREW element is a block with a right-to-left base direction, the ENGLISH
element is a block with a left-to-right base direction. The PARs are blocks that inherit
the base direction from their parents. Thus, the first two PARs are read starting at
the top right, the final three are read starting at the top left. Please note that
HEBREW and ENGLISH are chosen as element names for explicitness only; in
general, element names should convey structure without reference to language.

The EMPH element is inline-level, and since its value for is 'normal’
(the initial value), it has no effect on the ordering of the text. The HE-QUO element,
on the other hand, creates an embedding.

168 7 Jun 2011 17:58

Visual formatting model

The formatting of this text might look like this if the line length is long:

5WERBEH 4WERBEH english3 2WERBEH 1WERBEH
S8WERBEH 7W\ERBEH 6 WERBEH
english9 english10 english11l 13WERBEH 12WERBEH
english14 english15 english16
english17 20WERBEH english19 18WERBEH

Note that the HE-QUO embedding causes HEBREW18 to be to the right of
english19.

If lines have to be broken, it might be more like this:

2WERBEH 1WERBEH
-EH 4WERBEH english3
5WERB

-EH 7WERBEH6WERBEH
S8WERB

english9 english10 en-
glish11 122WERBEH
13WERBEH

english14 english15
english16

english17 18WERBEH
20WERBEH english19

Because HEBREW18 must be read before english19, it is on the line above
english19. Just breaking the long line from the earlier formatting would not have
worked. Note also that the first syllable from english19 might have fit on the previous
line, but hyphenation of left-to-right words in a right-to-left context, and vice versa, is
usually suppressed to avoid having to display a hyphen in the middle of a line.

7 Jun 2011 17:58 169

Visual formatting model

170 7 Jun 2011 17:58

Visual formatting model details

10 Visual formatting model details

Contents
[10.1 Definition of "containing block 171
[10.2 Content width: the 'width’ propertyy 174
[10.3 Calculating widths and margins| 175
|10.3.1 Inline, non-replaced elements|ars
[10.3.2 Inline, replaced elements| 175
|10.3.3 Block-level, non-replaced elements in normal rova . . . 176
|10.3.4 Block-level, replaced elements in normal flow] 176
|10.3.5 Floating, non-replaced elements| 177
|10.3.6 Floating, replaced elements] 44
|10.3.7 Absolutely positioned, non-replaced elementsl A Y 44
[10.3.8 Absolutely positioned, replaced elements| 179
|10.3.9 'Inline-block’, non-replaced elements in normal flow] . . . 179
|10.3.10 ’'Inline-block’, replaced elements in normal flomy 179
[10.4 Minimum and maximum widths: 'min-width’ and 'max-width’] . . . 179
[10.5 Content height: the ’height’ property 182
|10.6 Calculating heights and margins| 184
[10.6.1 Inline, non-replaced elements| . 184

|10.6.2 Inline replaced elements, block-level replaced eIements in normall
[flow, 'inline-block’ replaced elements in normal flow and floating replaced |

elements 185
|10.6.3 Block-level non- replaced eIements in normal flow when ‘overflow]|
[computes to 'visible]]85
|10.6.4 Absolutely positioned, non- replaced elementsl 186
|10.6.5 Absolutely positioned, replaced elements] 187
|10.6.6 Complicated cases| 187
[10.6.7 'Auto’ heights for block formattmg context rootsl 187
[10.7 Minimum and maximum heights: 'min-height’ and 'max-height] . . 188
|10.8 Line height calculations: the ’line-height’ and ’vertical-align’ properties| 189
[10.8.1 Leading and half-leadingf 190

10.1 Definition of "containing block"

The position and size of an element’s box(es) are sometimes calculated relative to a
certain rectangle, called the containing block of the element. The containing block of
an element is defined as follows:

1. The containing block in which the [root element [p. 45] lives is a rectangle called
the initial containing block. For continuous media, it has the dimensions of the

[p. 128] and is anchored at the canvas origin; it is the [page ared|

7 Jun 2011 17:58 171

Visual formatting model details

[p. 224] for paged media. The ’direction’ property of the initial containing block is
the same as for the root element.

2. For other elements, if the element’s position is 'relative’ or 'static’, the containing
block is formed by the content edge of the nearest|block container{[p. 129]
ancestor box.

3. If the element has 'position: fixed’, the containing block is established by the
[p. 128] in the case of continuous media or the page area in the case of
paged media.

4. If the element has 'position: absolute’, the containing block is established by the
nearest ancestor with a[position] of ‘absolute’, 'relative’ or *fixed’, in the following
way:

1. Inthe case that the ancestor is an inline element, the containing block is the
bounding box around the padding boxes of the first and the last inline boxes
generated for that element. In CSS 2.1, if the inline element is split across
multiple lines, the containing block is undefined.

2. Otherwise, the containing block is formed by the [p. 112] of
the ancestor.

If there is no such ancestor, the containing block is the initial containing block.

In paged media, an absolutely positioned element is positioned relative to its
containing block ignoring any page breaks (as if the document were continuous).
The element may subsequently be broken over several pages.

For absolutely positioned content that resolves to a position on a page other than
the page being laid out (the current page), or resolves to a position on the current
page which has already been rendered for printing, printers may place the content

e on another location on the current page,
® 0n a subsequent page, or
® may omit it.

Note that a block-level element that is split over several pages may have a differ-
ent width on each page and that there may be device-specific limits.

Example(s):
With no positioning, the containing blocks (C.B.) in the following document:

<IDOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN">
<HTML>
<HEAD>
<TITLE>lllustration of containing blocks</TITLE>
</HEAD>
<BODY id="body">
<DIV id="div1">
<P id="p1">This is text in the first paragraph...</P>
<P id="p2">This is text <EM id="em1"> in the

172 7 Jun 2011 17:58

<STRONG id="strong1">second paragraph.</P>

</DIV>
</BODY>
</HTML>

Visual formatting model details

are established as follows:

For box generated by | C.B. is established by

html initial C.B. (UA-dependent)
body html

divl body

pl divl

p2 divl

eml p2

strongl p2

If we position "div1":

#divl { position: absolute; left: 50px; top: 50px }

its containing block is no longer "body"; it becomes the initial containing block

(since there are no other positioned ancestor boxes).

If we position "em1" as well:

#div1 { position: absolute; left: 50px; top: 50px }
#eml { position: absolute; left: 100px; top: 100px }

the table of containing blocks becomes:

For box generated by | C.B. is established by

html initial C.B. (UA-dependent)
body html

divl initial C.B.

pl divl

p2 divl

eml divl

strongl eml

7 Jun 2011 17:58

173

Visual formatting model details

By positioning "em1", its containing block becomes the nearest positioned ances-
tor box (i.e., that generated by "div1l").

10.2 Content width: the [width’| property

‘width’
Value: [<length>] | <percentage>| | auto |[inherii]
Initial: auto
Applies to: all elements but non-replaced inline elements, table rows, and
row groups
Inherited: no
Percentages: refer to width of containing block
Media:

Computed value: the percentage or 'auto’ as specified or the absolute length

This property specifies the [content width| [p. 113] of boxes.

This property does not apply to non-replaced[inling] [p. 131] elements. The content
width of a non-replaced inline element’s boxes is that of the rendered content within
them (before any relative offset of children). Recall that inline boxes flow into [line]
[boxes| [p. 138] . The width of line boxes is given by the their [containing blocK [p. 128]
, but may be shorted by the presence of floats| [p. 142] .

Values have the following meanings:

Specifies the width of the content area using a length unit.

[<percentage> |
Specifies a percentage width. The percentage is calculated with respect to the
width of the generated box’s [containing block|[p. 128] . If the containing block’s
width depends on this element’s width, then the resulting layout is undefined in
CSS 2.1. Note: For absolutely positioned elements whose containing block is
based on a block container element, the percentage is calculated with respect to
the width of the padding box of that element. This is a change from CSS1,
where the percentage width was always calculated with respect to the content
box of the parent element.

auto
The width depends on the values of other properties. See the sections below.

Negative values for [width] are illegal.
Example(s):
For example, the following rule fixes the content width of paragraphs at 100 pixels:

p { width: 100px }

174 7 Jun 2011 17:58

Visual formatting model details

10.3 Calculating widths and margins

The values of an element’s [width’, [margin-left], [margin-right}, [left] and [right] proper-
ties as used for layout depend on the type of box generated and on each other. (The
value used for layout is sometimes referred to as the[used value] [p. 100] .) In princi-
ple, the values used are the same as the computed values, with 'auto’ replaced by
some suitable value, and percentages calculated based on the containing block, but
there are exceptions. The following situations need to be distinguished:

inline, non-replaced elements

inline, replaced elements

block-level, non-replaced elements in normal flow
block-level, replaced elements in normal flow
floating, non-replaced elements

floating, replaced elements

absolutely positioned, non-replaced elements
absolutely positioned, replaced elements
'inline-block’, non-replaced elements in normal flow
'inline-block’, replaced elements in normal flow

©COeNOORAWDNE

=
©

For Points 1-6 and 9-10, the values of 'left’ and 'right’ in the case of relatively posi-

tioned elements are determined by the rules in|section 9.4.3[p. 141]

Note. The used value of 'width’ calculated below is a tentative value, and may
have to be calculated multiple times, depending on[min-width’] and [max-width}, see
the section [Minimum and maximum widths|[p. 179] below.

10.3.1 Inline, non-replaced elements

The property does not apply. A computed value of 'auto’ for or
becomes a used value of ‘0.

10.3.2 Inline, replaced elements

A computed value of 'auto’ for[margin-left] or|margin-right] becomes a used value of
0.

If[height]and[width]both have computed values of 'auto’ and the element also
has an intrinsic width, then that intrinsic width is the used value of[width’.

Iffheight]and[width’]both have computed values of 'auto’ and the element has no
intrinsic width, but does have an intrinsic height and intrinsic ratio; or iffwidth] has a
computed value of 'auto’, has some other computed value, and the element
does have an intrinsic ratio; then the used value of [width] is:

(used height) * (intrinsic ratio)

7 Jun 2011 17:58 175

Visual formatting model details

If "height’ and both have computed values of 'auto’ and the element has an
intrinsic ratio but no intrinsic height or width, then the used value of 'width’ is unde-
fined in CSS 2.1. However, it is suggested that, if the containing block’s width does
not itself depend on the replaced element’s width, then the used value of 'width’ is
calculated from the constraint equation used for block-level, non-replaced elements
in normal flow.

Otherwise, if has a computed value of 'auto’, and the element has an intrin-
sic width, then that intrinsic width is the used value of[width’

Otherwise, iffwidth]has a computed value of 'auto’, but none of the conditions
above are met, then the used value of [width]becomes 300px. If 300px is too wide to
fit the device, UAs should use the width of the largest rectangle that has a 2:1 ratio
and fits the device instead.

10.3.3 Block-level, non-replaced elements in normal flow

The following constraints must hold among the used values of the other properties:

[margin-left]+[border-left-width’| + [padding-left] + fwidth] + [padding-right’ +
[border-right-width’| +|'margin-right] = width of [containing block| [p. 171]

If 'width’ is not 'auto’ and 'border-left-width’ + 'padding-left’ + 'width’ +
‘padding-right’ + 'border-right-width’ (plus any of ‘'margin-left’ or ‘'margin-right’ that are
not 'auto’) is larger than the width of the containing block, then any 'auto’ values for
'margin-left’ or 'margin-right’ are, for the following rules, treated as zero.

If all of the above have a computed value other than 'auto’, the values are said to
be "over-constrained" and one of the used values will have to be different from its
computed value. If the property of the containing block has the value ltr’,
the specified value of[margin-right]is ignored and the value is calculated so as to

make the equality true. If the value of[direction]is 'rtl’, this happens to[margin-left]

instead.
If there is exactly one value specified as 'auto’, its used value follows from the
equality.

If is set to 'auto’, any other 'auto’ values become '0’ and follows from
the resulting equality.

If both[margin-left]and [margin-right’] are 'auto’, their used values are equal. This
horizontally centers the element with respect to the edges of the containing block.

10.3.4 Block-level, replaced elements in normal flow

The used value of [width]is determined as for[inline replaced elements| [p. 175] .
Then the rules|for non-replaced block-level elements|[p. 176] are applied to deter-
mine the margins.

176 7 Jun 2011 17:58

Visual formatting model details

10.3.5 Floating, non-replaced elements

Ifmargin-left’], or[margin-right]are computed as 'auto’, their used value is '0’.
If is computed as 'auto’, the used value is the "shrink-to-fit" width.

Calculation of the shrink-to-fit width is similar to calculating the width of a table cell
using the automatic table layout algorithm. Roughly: calculate the preferred width by
formatting the content without breaking lines other than where explicit line breaks
occur, and also calculate the preferred minimum width, e.g., by trying all possible
line breaks. CSS 2.1 does not define the exact algorithm. Thirdly, find the available
width: in this case, this is the width of the containing block minus the used values of
'margin-left’, 'border-left-width’, ‘padding-left’, 'padding-right’, 'border-right-width’,
‘'margin-right’, and the widths of any relevant scroll bars.

Then the shrink-to-fit width is: min(max(preferred minimum width, available width),
preferred width).
10.3.6 Floating, replaced elements

If'margin-left] or[margin-right] are computed as 'auto’, their used value is '0’. The
used value of is determined as for(inline replaced elements|[p. 175] .

10.3.7 Absolutely positioned, non-replaced elements

For the purposes of this section and the next, the term "static position" (of an
element) refers, roughly, to the position an element would have had in the normal
flow. More precisely:

® The static-position containing block is the containing block of a hypothetical box
that would have been the first box of the element if its specified [position] value
had been 'static’ and its specified 'float’ had been 'none’. (Note that due to the
rules in[section 9.7][p. 153] this hypothetical calculation might require also
assuming a different computed value for 'display’.)

® The static position for ’left’ is the distance from the left edge of the containing
block to the left margin edge of a hypothetical box that would have been the first
box of the element if its[position] property had been 'static’ and [float] had been
'none’. The value is negative if the hypothetical box is to the left of the contain-
ing block.

® The static position for 'right’ is the distance from the right edge of the containing
block to the right margin edge of the same hypothetical box as above. The value
is positive if the hypothetical box is to the left of the containing block’s edge.

But rather than actually calculating the dimensions of that hypothetical box, user
agents are free to make a guess at its probable position.

For the purposes of calculating the static position, the containing block of fixed
positioned elements is the initial containing block instead of the viewport, and all
scrollable boxes should be assumed to be scrolled to their origin.

7 Jun 2011 17:58 177

Visual formatting model details

The constraint that determines the used values for these elements is:

‘left’ + 'margin-left’ + border-left-width’ + 'padding-left’ + 'width’ +
‘padding-right’ + 'border-right-width’ + 'margin-right’ + 'right’ = width of containing
block

If all three of 'left’, 'width’, and 'right’ are "auto’: First set any 'auto’ values for
'margin-left’ and 'margin-right’ to 0. Then, if the 'direction’ property of the element
establishing the static-position containing block is ’Itr’ set 'left’ to the

[p. 177] and apply rule number three below; otherwise, set ’right’ to the [static position]
[p. 177] and apply rule number one below.

If none of the three is 'auto’: If both 'margin-left’ and 'margin-right’ are 'auto’, solve
the equation under the extra constraint that the two margins get equal values, unless
this would make them negative, in which case when direction of the containing block
is 'Itr’ ('rtl’), set 'margin-left’ (‘'margin-right’) to zero and solve for 'margin-right’
(‘'margin-left’). If one of 'margin-left’ or 'margin-right’ is 'auto’, solve the equation for
that value. If the values are over-constrained, ignore the value for ’left’ (in case the
"direction’ property of the containing block is 'rtl') or 'right’ (in case 'direction’ is 'Itr’)
and solve for that value.

Otherwise, set 'auto’ values for 'margin-left’ and 'margin-right’ to 0, and pick the
one of the following six rules that applies.

1. ’left’ and 'width’ are 'auto’ and 'right’ is not 'auto’, then the width is shrink-to-fit.
Then solve for ’left’

2. ’left’ and 'right’ are 'auto’ and 'width’ is not 'auto’, then if the 'direction’ property
of the element establishing the static-position containing block is 'ltr’ set ’left’ to
the [static position|[p. 177] , otherwise set 'right’ to the [static position] [p. 177] .
Then solve for ’left’ (if 'direction is 'rtl") or 'right’ (if 'direction’ is "Itr’).

3. 'width’ and 'right’ are "auto’ and ’left’ is not 'auto’, then the width is shrink-to-fit .
Then solve for 'right’

4. ’left’ is "auto’, 'width’ and 'right’ are not "auto’, then solve for 'left’

5. 'width’ is 'auto’, "left’ and 'right’ are not 'auto’, then solve for 'width’

6. 'right’ is 'auto’, 'left’ and 'width’ are not 'auto’, then solve for 'right’

Calculation of the shrink-to-fit width is similar to calculating the width of a table cell
using the automatic table layout algorithm. Roughly: calculate the preferred width by
formatting the content without breaking lines other than where explicit line breaks
occur, and also calculate the preferred minimum width, e.g., by trying all possible
line breaks. CSS 2.1 does not define the exact algorithm. Thirdly, calculate the avail-
able width: this is found by solving for 'width’ after setting 'left’ (in case 1) or 'right’ (in
case 3)to 0.

Then the shrink-to-fit width is: min(max(preferred minimum width, available width),
preferred width).

178 7 Jun 2011 17:58

Visual formatting model details

10.3.8 Absolutely positioned, replaced elements

In this case, |section 10.3.7|[p. 177] applies up through and including the constraint
equation, but the rest of[section 10.3.7|[p. 177] is replaced by the following rules:

1.

The used value of [width]is determined as for|inline replaced elements| [p. 175] .
Iffmargin-left] or [margin-right]is specified as 'auto’ its used value is determined
by the rules below.

If both [Teft] and [right] have the value 'auto’, then if the ’direction’ property of the
element establishing the static-position containing block is "It set[left]to the
static position; else if 'direction’ is 'rtl’, setto the static position.

If[left] or[right] are "auto’, replace any 'auto’ on[margin-left] or[margin-right] with
0.

If at this point both [margin-left]and[margin-right] are still 'auto’, solve the equa-
tion under the extra constraint that the two margins must get equal values,
unless this would make them negative, in which case when the direction of the
containing block is 'ltr’ ('rtl’), set[margin-left] {margin-right]) to zero and solve for
[margin-right| (margin-left’).

If at this point there is an 'auto’ left, solve the equation for that value.

If at this point the values are over-constrained, ignore the value for either [left]
(in case the[direction] property of the containing block is 'rtl) or[right] (in case

'directionis 'ltr'") and solve for that value.

10.3.9 ’Inline-block’, non-replaced elements in normal flow
Iffwidth]is auto’, the used value is the [p. 177] width as for floating

elements.

A computed value of 'auto’ for|margin-left] or[margin-right] becomes a used value
of '0".

10.3.10 ’'Inline-block’, replaced elements in normal flow

Exactly as|inline replaced elements|[p. 175]

10.4 Minimum and maximum widths: 'min-width’l and

'max-width’

'min-width’

7 Jun 2011 17:58 179

Visual formatting model details

Value: [<length>| | [<percentage>|| inherit)

Initial: 0

Applies to: all elements but non-replaced inline elements, table rows, and
row groups

Inherited: no

Percentages: refer to width of containing block

Media:

Computed value: the percentage as specified or the absolute length

'max-width’

Value: [<length>] | [<percentage>] | none | [inherit]

Initial: none

Applies to: all elements but non-replaced inline elements, table rows, and
row groups

Inherited: no

Percentages: refer to width of containing block

Media:

Computed value: the percentage as specified or the absolute length or 'none’

These two properties allow authors to constrain content widths to a certain range.
Values have the following meanings:

Specifies a fixed minimum or maximum used width.

l<percentage> |
Specifies a percentage for determining the used value. The percentage is calcu-
lated with respect to the width of the generated box’s [containing block| [p. 128] .
If the containing block’s width is negative, the used value is zero. If the contain-
ing block’s width depends on this element’s width, then the resulting layout is
undefined in CSS 2.1.

none

(Only on[max-width’) No limit on the width of the box.

Negative values formin-width’land [max-width’| are illegal.

In CSS 2.1, the effect of ‘'min-width’ and 'max-width’ on tables, inline tables, table
cells, table columns, and column groups is undefined.

The following algorithm describes how the two properties influence the [used value]
[p. 100] of the property:

1. The tentative used width is calculated (without|min-width’land [max-width’)
following the rules under['Calculating widths and margins'{[p. 175] above.

2. If the tentative used width is greater than [max-width], the rules[above] [p. 175]
are applied again, but this time using the computed value of[max-width] as the
computed value for[width}

3. If the resulting width is smaller than[min-width’, the rules [above] [p. 175] are

180 7 Jun 2011 17:58

Visual formatting model details

applied again, but this time using the value of [min-width] as the computed value
for [width}

These steps do not affect the real computed values of the above properties.

However, for replaced elements with an intrinsic ratio and both [width’land [height]
specified as 'auto’, the algorithm is as follows:

Select from the table the resolved height and width values for the appropriate
constraint violation. Take the max-width and max-height as max(min, max) so that
min [] max holds true. In this table w and h stand for the results of the width and
height computations ignoring the [min-width’, | min-height}, | max-width’] and
properties. Normally these are the intrinsic width and height, but they
may not be in the case of replaced elements with intrinsic ratios.

Note: In cases where an explicit width or height is set and the other dimension is
auto, applying a minimum or maximum constraint on the auto side can cause an
over-constrained situation. The spec is clear in the behavior but it might not be what
the author expects. The CSS3 object-fit property can be used to obtain different
results in this situation.

7 Jun 2011 17:58 181

Constraint Violation

Visual formatting model details

Resolved Width

Resolved Height

none w h
Wi *
w > max-width max-width mf”‘x(m?‘x width * hiw,
min-height)
W < min-width min-width min(min-width * h/w,
max-height)
e max(max-height * w/h, o
h > max-height min-width) max-height
. min(min-height * w/h, .
h < min-height max-width) min-height
(w > max-width) and max(min-height
(h > max-height), where max-width ght,

(max-width/w [] max-height/h)

max-width * h/w)

(w > max-width) and

max(min-width,

(h > max-height), where L max-height
(max-widthiw > max-heighthy | Max-height w/h)

(w < min-width) and : o

(h < min-height), where min(max-width, min-height

(min-width/w [J min-height/h)

min-height * w/h)

(w < min-width) and

min(max-height,

(h < min-height), where min-width L
(min-width/w > min-height/h) min-width * hw)
E\;‘V:r;]n;r:(vr\::;?t? nd min-width max-height
(w > max-width) and max-width min-height

(h < min-height)

Then apply the rules under['Calculating widths and margins'| [p. 175] above, as if

'width’|were computed as this value.

10.5 Content height: the [height’| property

‘height’

182

7 Jun 2011 17:58

Visual formatting model details

Value: [<length>] | [<percentage>] | auto | [inherif

Initial: auto

Applies to: all elements but non-replaced inline elements, table columns,
and column groups

Inherited: no

Percentages: see prose

Media:

Computed value: the percentage or 'auto’ (see prose under[<percentage>) or
the absolute length

This property specifies the [content height] [p. 113] of boxes.

This property does not apply to non-replaced[inling] [p. 131] elements. See the
[section on computing heights and margins for non-replaced inline elements|[p. 184]
for the rules used instead.

Values have the following meanings:

Specifies the height of the content area using a length value.

[<percentage> |
Specifies a percentage height. The percentage is calculated with respect to the
height of the generated box’s|containing block| [p. 128] . If the height of the
containing block is not specified explicitly (i.e., it depends on content height),
and this element is not absolutely positioned, the value computes to 'auto’. A
percentage height on the [root element [p. 45] is relative to the [initial containing]
[block] [p. 171] . Note: For absolutely positioned elements whose containing block
is based on a block-level element, the percentage is calculated with respect to
the height of the padding box of that element. This is a change from CSS1,
where the percentage was always calculated with respect to the content box of
the parent element.

auto
The height depends on the values of other properties. See the prose below.

Note that the height of the containing block of an absolutely positioned element is
independent of the size of the element itself, and thus a percentage height on such
an element can always be resolved. However, it may be that the height is not known
until elements that come later in the document have been processed.

Negative values for[height] are illegal.
Example(s):

For example, the following rule sets the content height of paragraphs to 100
pixels:

p { height: 100px }

7 Jun 2011 17:58 183

Visual formatting model details

Paragraphs of which the height of the contents exceeds 100 pixels will foverflow]
[p. 195] according to the property.

10.6 Calculating heights and margins

For calculating the values of[top’, [margin-top’, [height}, | margin-bottom?, and[bottom]
a distinction must be made between various kinds of boxes:

inline, non-replaced elements

inline, replaced elements

block-level, non-replaced elements in normal flow
block-level, replaced elements in normal flow
floating, non-replaced elements

floating, replaced elements

absolutely positioned, non-replaced elements
absolutely positioned, replaced elements
'inline-block’, non-replaced elements in normal flow
'inline-block’, replaced elements in normal flow

©XONOOOAWNE

[EnY
o

For Points 1-6 and 9-10, the used values of 'top’ and 'bottom’ are determined by
the rules in section 9.4.3.

Note: these rules apply to the root element just as to any other element.

Note. The used value of 'height’ calculated below is a tentative value, and may
have to be calculated multiple times, depending on|min-height]and [max-height],
see the section [Minimum and maximum heights|[p. 188] below.

10.6.1 Inline, non-replaced elements

The property does not apply. The height of the content area should be based
on the font, but this specification does not specify how. A UA may, e.g., use the
em-box or the maximum ascender and descender of the font. (The latter would
ensure that glyphs with parts above or below the em-box still fall within the content
area, but leads to differently sized boxes for different fonts; the former would ensure
authors can control background styling relative to the ’line-height’, but leads to
glyphs painting outside their content area.)

Note: level 3 of CSS will probably include a property to select which measure of
the font is used for the content height.

The vertical padding, border and margin of an inline, non-replaced box start at the
top and bottom of the content area, and has nothing to do with the[line-height} But
only the is used when calculating the height of the line box.

If more than one font is used (this could happen when glyphs are found in different
fonts), the height of the content area is not defined by this specification. However,
we suggest that the height is chosen such that the content area is just high enough
for either (1) the em-boxes, or (2) the maximum ascenders and descenders, of all

184 7 Jun 2011 17:58

Visual formatting model details

the fonts in the element. Note that this may be larger than any of the font sizes
involved, depending on the baseline alignment of the fonts.

10.6.2 Inline replaced elements, block-level replaced
elements in normal flow, 'inline-block’ replaced elements in
normal flow and floating replaced elements

Iffmargin-top’, or[margin-bottom’| are 'auto’, their used value is 0.

If[height]and[width’]both have computed values of 'auto’ and the element also
has an intrinsic height, then that intrinsic height is the used value of[height]

Otherwise, if has a computed value of 'auto’, and the element has an
intrinsic ratio then the used value of is:

(used width) / (intrinsic ratio)

Otherwise, if has a computed value of 'auto’, and the element has an
intrinsic height, then that intrinsic height is the used value of[height}

Otherwise, if[height] has a computed value of 'auto’, but none of the conditions
above are met, then the used value of [height] must be set to the height of the largest
rectangle that has a 2:1 ratio, has a height not greater than 150px, and has a width
not greater than the device width.

10.6.3 Block-level non-replaced elements in normal flow when
‘'overflow’ computes to 'visible’

This section also applies to block-level non-replaced elements in normal flow when
‘overflow’ does not compute to 'visible’ but has been propagated to the viewport.

If[margin-top’} or[margin-bottom’are 'auto’, their used value is 0. If is
‘auto’, the height depends on whether the element has any block-level children and
whether it has padding or borders:

The element’s height is the distance from its top content edge to the first applica-
ble of the following:

1. the bottom edge of the last line box, if the box establishes a inline formatting
context with one or more lines

2. the bottom edge of the bottom (possibly collapsed) margin of its last in-flow
child, if the child’s bottom margin does not collapse with the element’s bottom
margin

3. the bottom border edge of the last in-flow child whose top margin doesn’t
collapse with the element’s bottom margin

4. zero, otherwise

7 Jun 2011 17:58 185

Visual formatting model details

Only children in the normal flow are taken into account (i.e., floating boxes and
absolutely positioned boxes are ignored, and relatively positioned boxes are consid-
ered without their offset). Note that the child box may be anjanonymous block box
[p. 129]

10.6.4 Absolutely positioned, non-replaced elements

For the purposes of this section and the next, the term "static position" (of an
element) refers, roughly, to the position an element would have had in the normal
flow. More precisely, the static position for 'top’ is the distance from the top edge of
the containing block to the top margin edge of a hypothetical box that would have
been the first box of the element if its specified[position] value had been 'static’ and
its specified had been 'none’ and its specified had been 'none’. (Note
that due to the rules infsection 9.7][p. 153] this might require also assuming a differ-
ent computed value for 'display’.) The value is negative if the hypothetical box is
above the containing block.

But rather than actually calculating the dimensions of that hypothetical box, user
agents are free to make a guess at its probable position.

For the purposes of calculating the static position, the containing block of fixed
positioned elements is the initial containing block instead of the viewport.

For absolutely positioned elements, the used values of the vertical dimensions
must satisfy this constraint:

‘top’ + 'margin-top’ + 'border-top-width’ + 'padding-top’ + "height’ +
‘padding-bottom’ + 'border-bottom-width’ + ‘'margin-bottom’ + bottom’ = height of
containing block

If all three of 'top’, height’, and ’'bottom’ are auto, set 'top’ to the static position and
apply rule number three below.

If none of the three are 'auto’: If both 'margin-top’ and 'margin-bottom’ are 'auto’,
solve the equation under the extra constraint that the two margins get equal values.
If one of 'margin-top’ or 'margin-bottom’ is 'auto’, solve the equation for that value. If
the values are over-constrained, ignore the value for 'bottom’ and solve for that
value.

Otherwise, pick the one of the following six rules that applies.

1. 'top’ and 'height’ are 'auto’ and 'bottom’ is not 'auto’, then the height is
[the content per 10.6.7|[p. 187] , set "auto’ values for 'margin-top’ and
'margin-bottom’ to 0, and solve for 'top’

2. 'top’ and 'bottom’ are 'auto’ and ’'height’ is not 'auto’, then set 'top’ to the static
position, set 'auto’ values for 'margin-top’ and 'margin-bottom’ to 0, and solve for
‘bottom’

3. ’height’ and ’bottom’ are "auto’ and ’top’ is not 'auto’, then the height is[based on|
the content per 10.6.7|[p. 187], set 'auto’ values for ‘'margin-top’ and
'margin-bottom’ to 0, and solve for 'bottom’

186 7 Jun 2011 17:58

Visual formatting model details

4. 'top’ is 'auto’, 'height’ and 'bottom’ are not 'auto’, then set "auto’ values for
'margin-top’ and 'margin-bottom’ to 0, and solve for 'top’

5. ’height’ is 'auto’, 'top’ and 'bottom’ are not 'auto’, then 'auto’ values for
'margin-top’ and 'margin-bottom’ are set to 0 and solve for 'height’

6. 'bottom’ is 'auto’, 'top’ and 'height’ are not 'auto’, then set 'auto’ values for

'margin-top’ and 'margin-bottom’ to 0 and solve for 'bottom’
10.6.5 Absolutely positioned, replaced elements

This situation is similar to the previous one, except that the element has an
[p. 45] height. The sequence of substitutions is now:

1. The used value of[height]is determined as for [inline replaced elements| [p. 185]
. If 'margin-top’ or 'margin-bottom’ is specified as 'auto’ its used value is deter-
mined by the rules below.

2. If both[top]and [bottom] have the value 'auto’, replace[top] with the element’s
[p. 177].

3. If[bottom]is 'auto’, replace any 'auto’ on[margin-top] or[margin-bottom] with "0

4. If at this point both [margin-top’and | margin-bottom’| are still 'auto’, solve the
equation under the extra constraint that the two margins must get equal values.

5. If at this point there is only one 'auto’ left, solve the equation for that value.

6. If at this point the values are over-constrained, ignore the value for[bottom]and
solve for that value.

10.6.6 Complicated cases

This section applies to:

® Block-level, non-replaced elements in normal flow when 'overflow’ does not
compute to 'visible' (except if the 'overflow’ property’s value has been propa-
gated to the viewport).

e ’Inline-block’, non-replaced elements.
® Floating, non-replaced elements.

Iffmargin-top’}, or[margin-bottom’| are 'auto’, their used value is 0. If is
'auto’, the |height depends on the element’s descendants per 10.6.7|[p. 187] .

For 'inline-block’ elements, the margin box is used when calculating the height of
the line box.

10.6.7 'Auto’ heights for block formatting context roots

In certain cases (see, e.g., sections [p. 186] and[10.6.6|[p. 187] above), the
height of an element that establishes a block formatting context is computed as
follows:

7 Jun 2011 17:58 187

Visual formatting model details

If it only has inline-level children, the height is the distance between the top of the
topmost line box and the bottom of the bottommost line box.

If it has block-level children, the height is the distance between the top
margin-edge of the topmost block-level child box and the bottom margin-edge of the
bottommost block-level child box.

Absolutely positioned children are ignored, and relatively positioned boxes are
considered without their offset. Note that the child box may be anjanonymous block |

[p. 129]

In addition, if the element has any floating descendants whose bottom margin
edge is below the element’s bottom content edge, then the height is increased to
include those edges. Only floats that participate in this block formatting context are
taken into account, e.g., floats inside absolutely positioned descendants or other
floats are not.

10.7 Minimum and maximum heights: min-height’|and
'max-height’

It is sometimes useful to constrain the height of elements to a certain range. Two
properties offer this functionality:

'min-height’
Value: [<length>| | [<percentage>|| inherit]
Initial: 0
Applies to: all elements but non-replaced inline elements, table columns,
and column groups
Inherited: no
Percentages: see prose
Media:
Computed value: the percentage as specified or the absolute length
'max-height’
Value: [<length>] | [<percentage>] | none | finherit]
Initial: none
Applies to: all elements but non-replaced inline elements, table columns,
and column groups
Inherited: no
Percentages: see prose
Media:

Computed value: the percentage as specified or the absolute length or 'none’

188 7 Jun 2011 17:58

Visual formatting model details

These two properties allow authors to constrain box heights to a certain range.
Values have the following meanings:

Specifies a fixed minimum or maximum computed height.

[<percentage> |
Specifies a percentage for determining the used value. The percentage is calcu-
lated with respect to the height of the generated box’s|containing block [p. 128] .
If the height of the containing block is not specified explicitly (i.e., it depends on
content height), and this element is not absolutely positioned, the percentage
value is treated as '0’ (for[min-height) or 'none’ (for[max-height).

none

(Only on[max-height) No limit on the height of the box.

Negative values for[min-height]and[max-height]are illegal.

In CSS 2.1, the effect of 'min-height’ and 'max-height’ on tables, inline tables, table
cells, table rows, and row groups is undefined.

The following algorithm describes how the two properties influence the used value]
[p. 100] of the [height] property:

1. The tentative used height is calculated (without[min-height]and | max-height)
following the rules under ['Calculating heights and margins] [p. 184] above.

2. If this tentative height is greater than[max-height], the rules[above] [p. 184] are
applied again, but this time using the value of[max-height] as the computed
value for[height]

3. If the resulting height is smaller than[min-height], the rules[above] [p. 184] are
applied again, but this time using the value of[min-height] as the computed
value for[height]

These steps do not affect the real computed values of the above properties. The
change of used[height] has no effect on margin collapsing except as specifically
required by rules for[min-height] or[max-height]in['Collapsing margins" (8.3.1) |
[p. 117]

However, for replaced elements with both[width]and[height] computed as 'auto’,
use the algorithm under [Minimum and maximum widths]| [p. 179] above to find the
used width and height. Then apply the rules under['Computing heights and margins']
[p. 184] above, using the resulting width and height as if they were the computed
values.

10.8 Line height calculations: the [line-height’]and
'vertical-align’| properties

As described in the section oninline formatting contexts|[p. 138] , user agents flow
inline-level boxes into a vertical stack of[line boxes|[p. 138] . The height of a line box
is determined as follows:

7 Jun 2011 17:58 189

Visual formatting model details

1. The height of each inline-level box in the line box is calculated. For replaced
elements, inline-block elements, and inline-table elements, this is the height of
their margin box; for inline boxes, this is their ’line-height’. (See ['Calculating]
heights and margins"|[p. 184] and the [height of inline boxes] [p. 190] in['Leading]
and half-leading’] [p. 190] .)

2. The inline-level boxes are aligned vertically according to their[vertical-align]
property. In case they are aligned 'top’ or 'bottom’, they must be aligned so as to
minimize the line box height. If such boxes are tall enough, there are multiple
solutions and CSS 2.1 does not define the position of the line box’s baseline
(i.e., the position of the[strut, see below|[p. 191]).

3. The line box height is the distance between the uppermost box top and the
lowermost box bottom. (This includes the [strut [p. 191] as explained under
below.)

Empty inline elements generate empty inline boxes, but these boxes still have
margins, padding, borders and a line height, and thus influence these calculations
just like elements with content.

10.8.1 Leading and half-leading

CSS assumes that every font has font metrics that specify a characteristic height
above the baseline and a depth below it. In this section we use A to mean that height
(for a given font at a given size) and D the depth. We also define AD = A + D, the
distance from the top to the bottom. (See the note below for|how to find A and D for |
[TrueType and OpenType fonts.|[p. 191]) Note that these are metrics of the font as a
whole and need not correspond to the ascender and descender of any individual
glyph.

User agent must align the glyphs in a non-replaced inline box to each other by
their relevant baselines. Then, for each glyph, determine the A and D. Note that
glyphs in a single element may come from different fonts and thus need not all have
the same A and D. If the inline box contains no glyphs at all, it is considered to
contain astruf [p. 191] (an invisible glyph of zero width) with the A and D of the
element’s first available font.

Still for each glyph, determine the leading L to add, where L =[Tine-height] - AD.
Half the leading is added above A and the other half below D, giving the glyph and
its leading a total height above the baseline of A’ = A + L/2 and a total depth of D’ =
D+ L/2.

Note. L may be negative.

The height of the inline box encloses all glyphs and their half-leading on each side
and is thus exactly 'line-height’. Boxes of child elements do not influence this height.

Although margins, borders, and padding of non-replaced elements do not enter
into the line box calculation, they are still rendered around inline boxes. This means
that if the height specified by [Tine-height]is less than the content height of contained
boxes, backgrounds and colors of padding and borders may "bleed" into adjoining
line boxes. User agents should render the boxes in document order. This will cause

190 7 Jun 2011 17:58

Visual formatting model details

the borders on subsequent lines to paint over the borders and text of previous lines.

Note. CSS 2.1 does not define what the content area of an inline box is (see
10.6.1][p. 184] above) and thus different UAs may draw the backgrounds and
borders in different places.

Note. It is recommended that implementations that use OpenType or TrueType
fonts use the metrics "sTypoAscender" and "sTypoDescender" from the font's OS/2
table for A and D (after scaling to the current element’s font size). In the absence of
these metrics, the "Ascent" and "Descent" metrics from the HHEA table should be
used.

'line-height’
Value: normal | Knumber>|| [<length>| | [<Kpercentage>| | [inherit]
Initial: normal
Applies to: all elements
Inherited: yes
Percentages: refer to the font size of the element itself
Media:
Computed value: for|[<length>and [<percentage>|the absolute value; otherwise

as specified

On alblock container element] [p. 129] whose content is composed of [inline-level
[p. 131] elements, 'line-height’ specifies the minimal height of line boxes within the
element. The minimum height consists of a minimum height above the baseline and
a minimum depth below it, exactly as if each line box starts