
A Constraint-Based Speci�cation for Box Layout in CSS2Brian MichalowskiTechnical Report UW-CSE-98-06-03Department of Computer Science and EngineeringUniversity of WashingtonJune 1998
Author's address:Brian MichalowskiDept. of Computer Science & EngineeringUniversity of WashingtonPO Box 352350Seattle, Washington 98195 USAbam@cs.washington.edu

AbstractCascading Style Sheets provide a
exible mechanism for governing the appearance of Web pages.Cascading Style Sheets Level 2 (CSS2) are an enhancement to the original CSS1 speci�cation,giving Web page designers additional control over the appearance of Web pages. However, the CSS2speci�cation is written in English, leaving open the possibility of ambiguity or inconsistency. Wepresent a formalization of a subset of the CSS2 speci�cation using constraints hierarchies to helpensure that potential problems in the speci�cation are caught and corrected. We also comment onthe formalization process.

1 Introduction1.1 Cascading Style SheetsCascading style sheets are a mechanism suggested by the World Wide Web Consortium (W3C) to�x a fundamental problem with older versions of HTML | their inability to separate content andappearance. By writing di�erent style sheets, Web users can change the appearance of a documentwithout ever having to edit the original document. The most recent version of cascading style sheets,Cascading Style Sheets Level 2 (CSS2), gives both Web page designers and Web page viewers morecontrol over the font size, colors, and layout of pages than they had before.The layout of pages in CSS2 is governed by a box model | hierarchical elements of a document arelaid out in nested boxes which govern the elements' sizes and locations. This model is similar to themodel used by TEX and many other layout packages. These boxes are subject to various constraints,some speci�ed by the user and others speci�ed by the default behavior of the style sheets.The W3C speci�cation for box layout in CSS2 describes the constraints in plain English, whichis useful for communicating the information to humans but can easily be ambiguous or containinconsistencies. Several members of W3C suggested that we look at the speci�cations for box layoutin CSS2 and formalize them to help remove any ambiguities or inconsistencies in the speci�cation.1.2 ConstraintsConstraints have long been used to describe properties of user interfaces that should be enforced,such as ensuring that the left side of a window should always be to the left of the right side. Sincethe wording of the CSS2 speci�cation was so constraint-like, constraints seemed like a natural wayof formalize the speci�cation. In particular, a constraint hierarchy seemed appropriate. A constrainthierarchy is a set of constraints each of which has a strength associated with it indicating howimportant it is that that constraint be satis�ed. Constraint strengths are modeled mathematicallyas integers, but for convenience are often given symbolic names. For example, in the case of
oatingboxes in CSS2, it is required that
oating boxes do not appear before
oating boxes that weredeclared earlier in the document, there is a strong preference for a
oating box to be as close aspossible vertically to where it was declared, and there is a weak preference for
oating boxes to thebe as far to the left (or right, as the case may be) as possible.In general, whenever a variable in CSS2 is declared, such as the minimum width of a paragraphbeing 100 pixels or the width of a
oating box being 200 pixels, we add a constraint indicating thisto the set of constraints in the constraint solver. Every box has constraints associated with it, evenones that don't explicitly assign any values, since constraints also govern the behavior common toall boxes. The only declaration that does not generate a constraint is the setting of a �eld to auto.The CSS2 spec makes frequent use of a value called auto to represent the case when the renderingengine should compute the value based on other information. It became apparent that having a�eld set to auto did not involving adding any constraints, merely using the constraints already inthe constraint engine to compute that value.One issue that comes up in computing the best solution to a set of constraints is determining whicherror metric to use to decide between two potential solutions. Intuitively, a solution S is better thansolution T if both solutions match for some number of levels k, but on level k + 1 S has a smallererror than T . For example, if T and S have the same error for the required and strong constraints,but S has a smaller error for the weak constraints, then S is a better solution.1

For the CSS2 constraints, we chose a locally error better metric, which means that for each constraintat level k + 1 the error for S is less than or equal to the error for T , and for at least one of thoseconstraints the error of S is strictly less than the error for T . A locally predicate better metric, whichtreats all constraints that are not satis�ed as having the same error, seemed inappropriate for thisdomain, since it's better for a
oating box to only be pushed down 5 lines instead of 50. It did notseem necessary to use a global metric, in which the total error at each level is considered insteadthe error of for each constraint, since in this domain each constraint should be satis�ed as well aspossible independently of the others, and since generally it is computationally more di�cult to �ndglobal solutions to constraint hierarchies.Refer to [1] for a more complete discussion of constraint hierarchies.1.3 The Scope of This DocumentThis document attempts to formalize the part of the CSS2 spec concerned with box layout. In themost recent version of the speci�cation, this information was contained in sections 8, 9, and 10.However, not all information in sections 8 through 10 are described here. This document does notdescribe border styles, background colors, or other attributes that do not a�ect the layout of boxes.This document assumes that all information is locally available, and any conversion or inheritanceof values has already taken place. For example, it assumes that all height and width percentageshave been converted into pixel values. It also assumes that shorthands such as margin have beenexpanded into their separate margin-top, margin-left, margin-right and margin-bottom declarations.These sorts of conversions do not a�ect the �nal layout of the boxes; they are just shorthands toaid the style sheet creator, and as such are not described in this document. For similar reasons, thisdocument assumes that `compact' and `run-in' boxes have already been resolved into `block' and`inline' boxes. In addition, left-to-right layout is assumed for the sake of simplicity.The constraints presented in this document are based on the speci�cation for Cascading Sytle Sheets,Level 2 as presented in http://www.w3.org/TR/REC-CSS2-19980512, last edited on May 12, 1998 [2].While this is intended to be the �nal version of the speci�cation, in case the speci�cation has evolvedsince then, consult http://www.w3.org/TR for the most recent version of the \Cascading Style Sheets,level (2) Speci�cation".2 The Format of the ConstraintsThe constraints presented in this document contain both attributes, such as the width of a box, andvalues, such as auto. For the remainder of this document, attributes that appear in running text willbe display in a monospaced font, while values and constraint strengths will be displayed in italics.To avoid visual clutter, these items will not be typeset di�erent for constraints listed in tables.The constraints in the following sections appear in the form:8.1 req ref.TC - padding-top? = ref.TPThe �rst column indicates which section of the CSS speci�cation contains the English analogue of theconstraint, in this case, section 8.1. The second column indicates the strength of the constraint: req(required), strong, medium, weak, or vweak (very weak). (An additional pseudo-strength, REMOVE,indicates that a constraint should be removed from the engine instead of being added.)2

The remainder of each line lists the actual relationship that should hold. A "?" after a variableindicates that it is read-only [1]; the value of that variable may not be changed while attempting tosatisfy that constraint.The constraints in this section make use of several terms to describe each node. Ref (short for\reference box") describes the box that contains the current node. Actual describes where the boxis ultimately placed. This can be di�erent from ref if the box is positioned relatively. Previous refersto the ref box of the most recent element in the document tree that is not absolutely positioned,�xed, or a
oat. Enclosing refers to the actual box that establishes the containing block for thecurrent node. The exact speci�cations are enumerated in section 10.1 of the CSS2 speci�cation,but roughly speaking, enclosing refers to the viewport or the printed page for �xed boxes and thecurrent node's parent for other types of boxes.In addition, the following edges are de�ned:fT, L, R, Bg M = ftop, left, right, bottomg margin edgefT, L, R, Bg B = ftop, left, right, bottomg border edgefT, L, R, Bg P = ftop, left, right, bottomg padding edgefT, L, R, Bg C = ftop, left, right, bottomg content edgefT, L, R, Bg O = ftop, left, right, bottomg outer edgefT, L, R, Bg I = ftop, left, right, bottomg inner edgecontent edges and inner edges are synonymous (*C = *I)border edges have no synonymspadding edges and containing box edges are synonymousmargin edges and outer edges are synonymous (*M = *O)3 The Constraints3.1 Constraints for All BoxesThis section describes constraints that are applicable for all types of boxes.A few terms used in the constraints of this section are de�ned here. Medium-width is the width inpixels of a border that is declared `medium', a value that can vary from user agent to user agent.Since boxes attempt to be big enough to hold whatever their content is, heightOfContent() is afunction that represents the height of whatever a box's contents are. In the case of inline boxesthis can get very complicated, and since this activity is beyond the scope of this paper we simplyrepresent it as an externally computed function. In essence, heightOfContent() is whatever theheight would be if the height were declared to be auto. WidthOfContent() is analogous, although itusually only has a speci�c value if the element it describes is a replaced element.The line `actual.* = ref.*?' indicates a strong preference for each attribute of the actual box to bethe same as the corresponding attribute of the ref box. Only for relatively and absolutely positionedboxes and �xed boxes are these values di�erent.8.1 req ref.TC - padding-top? = ref.TP8.1 req ref.LC - padding-left? = ref.LP8.1 req ref.RC + padding-right? = ref.RP3

8.1 req ref.BC + padding-bottom? = ref.BP8.1 req ref.TP - border-top? = ref.TB8.1 req ref.LP - border-left? = ref.LB8.1 req ref.RP + border-right? = ref.RB8.1 req ref.BP + border-bottom? = ref.BB8.1 req ref.TB - margin-top? = ref.TM8.1 req ref.LB - margin-left? = ref.LM8.1 req ref.RB + margin-right? = ref.RM8.1 req ref.BB + margin-bottom? = ref.BM8.1 req LC + width = RC8.1 req TC + height = BC8.1 medium height = heightOfContent()8.1 medium width = widthOfContent()8.3 vweak margin-top = 08.3 vweak margin-right = 08.3 vweak margin-bottom = 08.3 vweak margin-left = 08.4 vweak padding-top = 08.4 vweak padding-right = 08.4 vweak padding-bottom = 08.4 vweak padding-left = 08.5 vweak border-top-width = medium-width8.5 vweak border-right-width = medium-width8.5 vweak border-bottom-width = medium-width8.5 vweak border-left-width = medium-width9.3.1 strong actual.* = ref.*?9.5 forall
oating boxes fb to the leftreq ref.LO >= fb.RB?9.5 forall
oating boxes fb to the rightreq ref.RO <= fb.LB?10.2 req width > 010.3 vweak left = 010.3 vweak right = 010.3 vweak top = 010.3 vweak bottom = 010.2 req height > 03.2 Line boxesThis section attempts to describe the behavior of boxes that are laid out horizontally from left-to-right if possible, and if there is no room on the current row are then laid out on the next row. Italso models the fact that
oats increase the margins of line boxes to ensure that the line boxes and
oating boxes do not overlap. These constraints use the external functions leftFloat(), which returnsthe rightmost left-
oating element on the current line, and rightFloat(), which returns the leftmostright-
oating element on the current line.
4

9.4.2 if (previous.RM + width + margin-left + margin-right+ border-left + border-right + padding-left+ padding-right <= enclosing.RP)strong ref.LM = previous.RM?strong ref.TM = previous.TM?elsestrong ref.TM = previous.BM?strong ref.LM = 0endif9.5 strong ref.LM? + margin-left >= leftFloat().RM9.5 strong ref.RM? - margin-right <= rightFloat().LM3.3 Normally positioned block boxesMuch of this section describes the behavior of margins of normally positioned block boxes whenthey collapse. The �rst set of constraints apply when only a set of top margins adjoin (i.e. at thetop of a document,) in which case the outermost top margin is set to the appropriate value and theothers are set to zero. The second set of constraints applies when both top and bottom margins oronly bottom margins adjoin (i.e. at the middle or end of a document.) In this case the outermostbottom margin is set to the appropriate value, and the others are zeroed out.In this section, fAMg (\adjoining margins") is the set of all adjoining margins at a location thatdo not involve
oating or absolutely positioned boxes. The function maxpos returns the positiveelement of a set which has the greatest absolute value, and maxneg returns the negative element ofa set with the greatest absolute value.8.3.1 if (TM is part of adjoining margin && previous == null)req ref.TM = maxpos(AM) + maxneg(AM)else if (TM is part of adjoining margin)req ref.TM = 0endif8.3.1 if (BM is part of adjoining margin && BM is outermost)req ref.BM = maxpos(AM) + maxneg(AM)else if (BM is part of adjoining margin)req ref.BM = 0endif9.4.1 strong ref.TM = previous.BM?9.4.1 strong ref.LM = enclosing.LC?10.3.3 strong margin-left + border-left-width + padding-left + width +padding-right + border-right-width + margin-right = enclosing.width10.3.3 weak margin-left = margin-right10.6.3 strong margin-top + border-top-width + padding-top + height +padding-bottom + border-bottom-width + margin-bottom = enclosing.height10.6.3 weak margin-top = margin-bottom 5

3.4 Position-based constraintsThese constraints describe the various e�ects that positioning a box has on its layout.position: relative9.3.2 req actual.TO = ref.TO? + top?9.3.2 req actual.LO = ref.LO? + left?9.3.2 req actual.RO = ref.RO? - right?9.3.2 req actual.BO = ref.BO? - bottom?position: absolute jj position:�xed9.3.2 req actual.TO = enclosing.TO? + top?9.3.2 req actual.LO = enclosing.LO? + left?9.3.2 req actual.RO = enclosing.RO? - right?9.3.2 req actual.BO = enclosing.BO? - bottom?10.3.7 strong left + margin-left + border-left-width + padding-left +width + padding-right + border-right-width + margin-right + right = enclosing.width?10.3.7 weak margin-left = margin-right10.6.4 strong top + margin-top + border-top-width + padding-top +height + padding-bottom + border-bottom-width + margin-bottom + bottom = enclosing.height?10.6.4 weak margin-top = margin-bottom3.5 FloatsThis section describes the constraints that govern the placement of
oats. The constraints for bothleft- and right-
oating boxes are enumerated for the sake of completeness, although the constraintsfor both are very similar. The nine constraints for each type of box follow exactly the nine ruleslisted in section 9.5.1 for
oating box layout.
oat:left9.5.1 req ref.LO >= enclosing.LP?9.5.1 req ref.LO >= lf.RO? orref.TO >= lf.BO?9.5.1 for all right-
oating boxes rf to the right,req ref.RO <= rf.LO?9.5.1 ref.TO >= enclosing.TI?9.5.1 for all previous block-level or
oated box elements pb,req ref.TO >= pb.TO?9.5.1 for all previous line box elements pl,req ref.TO >= pl.TO?9.5.1 if (ref.LO > enclosing.LI)req ref.RO <= enclosing.RI?9.5.1 medium ref.TO = 09.5.1 weak ref.LO = 0
oat: right 6

9.5.1 req ref.RO <= enclosing.RP?9.5.1 req ref.RO<=rf.LO orref.TO >= lf.BO?9.5.1 for all left-
oating boxes lf to the left,req ref.LO >= lf.RO?9.5.1 ref.TO >= enclosing.TI?9.5.1 for all previous block-level or
oated box elements pb,req ref.TO >= pb.TO?9.5.1 for all previous line box elements pl,req ref.TO >= pl.TO?9.5.1 if (ref.RO < enclosing.RI)req ref.LO >= enclosing.LI?9.5.1 medium ref.TO = 09.5.1 weak ref.LO = 03.6 ClearAny box can be declared to clear left, right, or both, meaning that
oating boxes cannot appear tothe left, right, or either side of that box, respectively. This section lists the constraints enforcingthis property.clear: left jj clear: both9.5.2 forall previous left-
oating boxes lbreq ref.TO >= lb.BO?clear: right jj clear: both9.5.2 forall previous right-
oating boxes rbreq ref.TO >= rb.BO?3.7 Other constraintsThis section describes miscellaneous, usually simple-to-describe constraints not covered elsewhere.In this section, value refers to the numeric value that was used in the attribute declaration. Forexample, if the line \margin-left = 10" were declared in a document, value would have the value 10.Since value is a constant and not an actual variable, it is not explicitly listed as read-only, even itsvalue would never changes.margin-ftop,bottomg: value8.3 strong margin-ftop,bottomg = value10.6.4 REMOVE margin-top = margin-bottommargin-fleft,rightg: value 7

8.3 strong margin-fleftg = value ormedium margin-right = value10.3.3 REMOVE margin-left = margin-rightpadding-ftop,right,bottom,leftg: value8.4 strong padding-ftop,right,bottom,leftg = valueborder-ftop,right,bottom,leftg-width: value8.5 strong border-ftop,right,bottom,leftg-width = valueftop, left, right, bottomg: right9.3.2 strong ftop, left, right, bottomg = valuez-index: value9.9 strong z-index = valuewidth: value10.4 strong width = valuemax-width: value10.4 req width <= valuemin-width: value10.4 req width >= valueheight: value10.5 strong height = valuemax-height: value10.5 req height <= valuemin-height: value10.5 req width >= value4 Conclusions and Future WorkThe process of translating the CSS2 speci�cation into constraints was very helpful, and revealedseveral ambiguities in the speci�cation and sections where the behavior was underspeci�ed, such as8

the behavior when left was de�ned to be auto but width and right were not.These constraints could be made even more useful by by adding them to a constraint solver. Thiswould create a simulation of the CSS2 speci�cation instead of merely a formalization, and would bean easy way of checking for errors within the constraints listed in this document and for discrep-ancies in the original speci�cation. This would be especially useful for future versions of CascadingStyle Sheets, enabling the designers of future versions of the speci�cation to easily test proposedmodi�cations.Some work needs to be done before this can happen. The constraints in this document currentlyrely on several external functions whose behaviors need to be speci�ed before the constraints couldactually be solved. In particular, this document does not address the packing of inline elements intoline boxes, an issue that needs to be addressed in greater detail.The two short-term additions to this document that would be the most helpful would be completingthe constraints listed herein and adding constraints to describe tables. The CSS2 speci�cationchanged while this document was being created, and some sections, such as 10.3 and 10.6, wereradically changed. As a result, the constraints describing these sections are incomplete. Section 17of the CSS2 speci�cation, the section describing tables, was also evolving rapidly, and as a result wedid not even attempt to formalize the behavior of tables. This would be a worthwhile project, sincethe behavior of tables is very complicated and somewhat confusing.The treatment of
oats in this document is somewhat cumbersome, and there may be more e�cientways of structuring the constraints for
oating boxes. This touches on the general problems ofdetermining when constraints are the best formalism and when other formalisms should be used,and determining how to combine the di�erent formalisms in simulation. While constraints have beenquite helpful in describing the CSS2 speci�cation in many sections, there are other sections whereconstraints do not seem appropriate.Despite the inadequacies of this document, we believe that the constraints listed herein are a useful�rst step in modeling the behavior of Cascading Style Sheets Level 2, and that a small amount ofadditional work could provide those interested in Cascading Style Sheets with an easy mechanism forsimulating changes to the speci�cation. We hope that these constraints will prove useful to designersof future versions of Cascading Style Sheets, and to anyone who is interested in the issues inherentin Web page layout.5 AcknowledgmentsThe author would like to thank Alan Borning at the University of Washington for providing infor-mation about constraint hierarchies and for helping to edit this paper. He would also like to thankH�akon Lie and Ian Jacobs at the World Wide Web Consortium for answering the author's questionsabout the Cascading Style Sheet Level 2 speci�cation. This project has been funded in part by theNational Science Foundation under Grant IRI-9302249.References[1] Alan Borning, Bjorn Freeman-Benson, and Molly Wilson. Constraint hierarchies. Lisp andSymbolic Computation, 5(3):223{270, September 1992.9

[2] Bert Bos, H�akon Lie, Chis Lilley, and Ian Jacobs. Cascading style sheets, level 2 speci�cation.http://www.w3.org/TR/REC-CSS2/.

10

