
G
A

Y
LE LA

A
K

M
A

N
N

C
A

R
EER

C
U

P.C
O

M
C

R
A

C
K

IN
G

 T
H

E C
O

D
IN

G
 IN

T
ER

V
IEW

Now in the 4th edition, Cracking the Coding Interview gives you the interview prepara-
tion you need to get the top software developer jobs This book provides:

• 150 Programming Interview Questions and Solutions
From binary trees to binary search, this list of 150 questions includes the most
common and most useful questions in data structures, algorithms, and knowledge
based questions

• Five Proven Approaches to Solving Tough Algorithm Questions
Using these fi ve approaches to solving algorithm questions, you can conquer
tough interview questions and impress your interviewer

• Ten Mistakes Candidates Make -- And How to Avoid Them
Don’t lose your dream job by making these common mistakes Learn what many
candidates do wrong, and how to avoid these issues

• Steps to Prepare for Behavioral and Technical Questions
Stop meandering through an endless set of questions, while missing some of the
most important preparation techniques Follow these steps to more thoroughly
prepare in less time

• Interview War Stories: A View from the Interviewer’s Side
Humorous but instructive stories from our interviewers show you how some can-
didates really fl opped on the most important question - and how you can avoid
doing the same

Gayle Laakmann founded CareerCup com in
2005 to provide technical interview coaching
for software engineers As a Software Engineer
at Microsoft, Apple and Google, she interviewed
over one hundred and twenty applicants in
three countries

She holds Bachelor’s and Master’s degrees in
Computer Science from the University of Penn-
sylvania

GAYLE LAAKMANN
Founder and CEO, CareerCup.com

150 programming interview questions and solutions
Plus:

• Five proven approaches to solving tough algorithm questions

• Ten mistakes candidates make -- and how to avoid them

• Steps to prepare for behavioral and technical questions

• Interviewer war stories: a view from the interviewer’s side

FOURTH
EDITIONCRACKING THE

C O D I N G
I N T E R V I E W

CRACKING THE

CODING
INTERVIEW

CRACKING THE

C O D I N G
I N T E R V I E W

150 Programming Interview
Questions and Solutions

GAYLE LAAKMANN
Founder and CEO, CareerCup.com

CareerCup, LLC
Seattle, WA

CRACKING THE CODING INTERVIEW, FOURTH EDITION

Copyright © 2008 - 2010 by Gayle Laakmann. All rights reserved.

Published by CareerCup, LLC, Seattle, WA. Version 3.21090410302210.

Visit our website at: www.careercup.com. No part of this book may be used or repro-
duced in any manner without written permission except in the case of brief quota-
tions in critical articles or reviews.

For more information, contact support@careercup.com.

Printed in United States of America

978-1-450-59320-5 9781450593205 (ISBN 13)

Cracking the Coding Interview1

Table of Contents

Foreword 4

Introduction 5

Behind the Scenes 7

The Microsoft Interview 8

The Amazon Interview 9

The Google Interview 10

The Apple Interview 11

The Yahoo Interview 12

Interview War Stories 13

Before the Interview 20

Resume Advice 21

Behavioral Preparation 23

Technical Preparation 25

The Interview and Beyond 28

Handling Behavioral Questions 29

Handling Technical Questions 31

Five Algorithm Approaches 34

The Offer and Beyond 37

Top Ten Mistakes Candidates Make 39

Frequently Asked Questions 41

Interview Questions 44

Data Structures 46

Chapter 1 | Arrays and Strings 47

Chapter 2 | Linked Lists 49

Chapter 3 | Stacks and Queues 51

Chapter 4 | Trees and Graphs 53

Concepts and Algorithms 56

Chapter 5 | Bit Manipulation 57

Chapter 6 | Brain Teasers 59

2CareerCup com

Table of Contents

Chapter 7 | Object Oriented Design 61

Chapter 8 | Recursion 63

Chapter 9 | Sorting and Searching 65

Chapter 10 | Mathematical 67

Chapter 11 | Testing 69

Chapter 12 | System Design and Memory Limits 71

Knowledge Based 74

Chapter 13 | C++ 75

Chapter 14 | Java 77

Chapter 15 | Databases 79

Chapter 16 | Low Level 81

Chapter 17 | Networking 83

Chapter 18 | Threads and Locks 85

Additional Review Problems 88

Chapter 19 | Moderate 89

Chapter 20 | Hard 91

Solutions 94

Index 301

Mock Interviews 303

About the Author 304

4CareerCup com

Foreword

Dear Readers,

Welcome to the 4th edition of Cracking the Coding Interview This volume updates the 3rd
edition with new content and refreshed information Be sure to check out our website, www
careercup com, to connect with other candidates and to discover new resources

For those of you new to technical interviews, the process can seem overwhelming Inter-
viewers throw questions at you, expect you to whip up brilliant algorithms on the spot, and
then ask you to write beautiful code on a whiteboard Luckily, everyone else is in the same
boat, and you’re already working hard to prepare Good job!

As you get ready for your interviews, consider these suggestions:

 » Write Code on Paper: Most interviewers won’t give you a computer and will instead
expect you to write code on a whiteboard or on paper To simulate this environment, try
answering interview problems by writing code on paper first, and then typing them into
a computer as-is Whiteboard / paper coding is a special skill, which can be mastered
with constant practice

 » Know Your Resume: While technical skills are extremely important, that’s no reason to
neglect your own resume Make sure to prepare yourself to give a quick summary of any
project or job you were involved with, and to discuss the hardest and most interesting
problems you encountered along the day

 » Don’t Memorize Solutions: While this book offers a representative sample of interview
questions, there are still thousands of interview questions out there Memorizing solu-
tions is not a great use of your time Rather, use this book to explore approaches to
problems, to learn new concepts, and to practice your skills

 » Talk Out Loud: Interviewers want to understand how you think and approach prob-
lems, so talk out loud while you’re solving problems Let the interviewer see how you’re
tackling the problem, and they just might guide you as well

And remember -- interviews are hard! In my years of interviewing at Google, I saw some
interviewers ask “easy” questions while others ask harder questions But you know what?
Getting the easy questions doesn’t make it any easier to get the offer Receiving an offer
is not about solving questions flawlessly (very few candidates do!), but rather, it is about
answering questions better than other candidates So don’t stress out when you get a tricky
question - everyone else probably thought it was hard too!

I'm excited for you and for the skills you are going to develop Thorough preparation will give
you a wide range of technical and communication skills It will be well-worth it no matter
where the effort takes you!

Study hard, practice, and good luck!

Gayle Laakmann

Cracking the Coding Interview5

Introduction

Something’s Wrong

We walked out of the hiring meeting frustrated, again Of the ten “passable” candidates we
reviewed that day, none would receive offers Were we being too harsh, we wondered?

I, in particular, was disappointed We had rejected one of my candidates A former student
One who I had referred He had a 3 73 GPA from the University of Washington, one of the
best computer science schools in the world, and had done extensive work on open source
projects He was energetic He was creative He worked hard He was sharp He was a true
geek, in all the best ways

But, I had to agree with the rest of the committee: the data wasn’t there Even if my emphatic
recommendation would sway them to reconsider, he would surely get rejected in the later
stages of the hiring process There were just too many red flags

Though the interviewers generally believed that he was quite intelligent, he had struggled
to develop good algorithms Most successful candidates could fly through the first ques-
tion, which was a twist on a well known problem, but he struggled to develop his algorithm
When he came up with one, he failed to consider solutions that optimized for other scenar-
ios Finally, when he began coding, he flew through the code with an initial solution, but it
was riddled with mistakes that he then failed to catch Though he wasn’t the worst candidate
we'd seen by any measure, he was far from meeting “the bar ” Rejected

When he asked for feedback over the phone a couple of weeks later, I struggled with what to
tell him Be smarter? No, I knew he was brilliant Be a better coder? No, his skills were on-par
with some of the best I'd seen

Like many motivated candidates, he had prepared extensively He had read K&R’s classic C
book and he'd reviewed CLRS' famous algorithms textbook He could describe in detail the
myriad of ways of balancing a tree, and he could do things in C that no sane programmer
should ever want to do

I had to tell him the unfortunate truth: those books aren’t enough Academic books prepare
you for fancy research, but they’re not going to help you much in an interview Why? I'll give
you a hint: your interviewers haven’t seen Red-Black Trees since they were in school either

To crack the coding interview, you need to prepare with real interview questions You must
practice on real problems, and learn their patterns

Cracking the Coding Interview is the result of my first-hand experience interviewing at top
companies It is the result of hundreds of conversations with candidates It is the result of the
thousands of candidate- and interviewer- contributed questions And it’s the result of seeing
so many interview questions from so many firms Enclosed in this book are 150 of the best
interview questions, selected from thousands of potential problems

6CareerCup com

Introduction

My Approach

The focus of Cracking the Coding Interview is algorithm, coding and design questions Why?
Because while you can and will be asked behavioral questions, the answers will be as varied
as your resume Likewise, while many firms will ask so-called “trivia” questions (e g , “What is
a virtual function?”), the skills developed through practicing these questions are limited to
very specific bits of knowledge The book will briefly touch on some of these questions, to
show you what they’re like, but I have chosen to allocate space where there’s more to learn

My Passion

Teaching is my passion I love helping people understand new concepts, and giving them
tools so that they can excel in their passions

My first experience “officially” teaching was in college at the University of Pennsylvania, when
I became a teaching assistant for an undergraduate Computer Science course during my
second year I went on to TA for several other courses, and eventually launched my own CS
course at the university focused on “hands-on” skills

As an engineer at Google, training and mentoring “Nooglers” (yes, that’s really what they call
new Google employees!) were some of the things I enjoyed most I went on to use my “20%
time” to teach two Computer Science courses at the University of Washington

Cracking the Coding Interview and CareerCup com reflect my passion for teaching Even
now, you can often find me “hanging out” at CareerCup com, helping users who stop by for
assistance

Join us

Gayle Laakmann

Cracking the Coding Interview7

Behind the Scenes

For many candidates, interviewing is a bit of a black box You walk in, you get pounded with
questions from a variety of interviewers, and then somehow or other you return with an of-
fer or not

Have you ever wondered:

 » How do decisions get made?

 » Do your interviewers talk to each other?

 » What does the company really care about?

Well, wonder no more!

CareerCup sought out interviewing experts from five top companies - Microsoft, Google,
Amazon, Yahoo and Apple - to show you what really happens “behind the scenes ” These
experts will walk us through a typical interview day and describe what’s taking place outside
of the interviewing room, and what happens after you leave

Our interviewing experts also told us what’s different about their interview process From bar
raisers (Amazon) to Hiring Committees (Google), each company has its own quirks Knowing
these idiosyncrasies will help you to react better to a super-tough interviewer, or to avoid
being intimidated when two interviewers show up at the door (Apple!)

In addition, our specialists offered insight as to what their company stresses in their inter-
views While almost all software firms care about coding and algorithms, some companies
focus more than others on specific aspects of the interview Whether this is because of the
company’s technology or its history, now you'll know what and how to prepare

So, join us as we take you behind the scenes at Microsoft, Google, Amazon, Yahoo and Ap-
ple

8CareerCup com

Behind the Scenes | The Microsoft Interview

Microsoft wants smart people Geeks People who are passionate about technology You
probably won’t be tested on the ins and outs of C++ APIs, but you will be expected to write
code on the board

In a typical interview, you'll show up at Microsoft at some time in the morning and fill out
initial paper work You'll have a short interview with a recruiter where he or she will give you
a sample question Your recruiter is usually there to prep you, and not to grill you on techni-
cal questions Be nice to your recruiter Your recruiter can be your biggest advocate, even
pushing to re-interview you if you stumbled on your first interview They can fight for you
to be hired - or not!

During the day, you'll do four or five interviews, often with two different teams Unlike many
companies, where you meet your interviewers in a conference room, you'll meet with your
Microsoft interviewers in their office This is a great time to look around and get a feel for the
team culture

Depending on the team, interviewers
may or may not share their feedback
on you with the rest of the interview
loop

When you complete your interviews
with a team, you might speak with
a hiring manager If so, that’s a great
sign! It likely means that you passed
the interviews with a particular team
It’s now down to the hiring manager’s
decision

You might get a decision that day, or
it might be a week After one week of
no word from HR, send them a friendly
email asking for a status update

Definitely Prepare:

“Why do you want to work for Microsoft?”

In this question, Microsoft wants to see
that you’re passionate about technology.
A great answer might be, “I’ve been using
Microsoft software as long as I can re-
member, and I'm really impressed at how
Microsoft manages to create a product
that is universally excellent. For example,
I’ve been using Visual Studio recently to
learn game programming, and it’s APIs
are excellent.” Note how this shows a
passion for technology!

What’s Unique:

You'll only reach the hiring manager if
you’ve done well, but if you do, that’s a
great sign!

Cracking the Coding Interview9

Behind the Scenes | The Amazon Interview

Amazon’s recruiting process usually begins with one or two phone screens in which you in-
terview with a specific team The engineer who interviews you will usually ask you to write
simple code and read it aloud on the phone They will ask a broad set of questions to explore
what areas of technology you’re familiar with

Next, you fly to Seattle for four or five interviews with one or two teams which have selected
you based on your resume and phone interviews You will have to code on a whiteboard,
and some interviewers will stress other skills Interviewers are each assigned a specific area
to probe and may seem very different from each other They can not see other feedback until
they have submitted their own and they are discouraged from discussing it until the hiring
meeting

Amazon’s “bar raiser” interviewer is charged with keeping the interview bar high They at-
tend special training and will interview candidates outside their group in order to balance
out the group itself If one interview seems significantly harder and different, that’s most like-
ly the bar raiser This person has both
significant experience with interviews
and veto power in the hiring decision
You will meet with your recruiter at the
end of the day

Once your interviewers have entered
their feedback, they will meet to dis-
cuss it They will be the people making
the hiring decision

While Amazon’s recruiters are excellent
at following up with candidates, occa-
sionally there are delays If you haven’t
heard from Amazon within a week, we
recommend a friendly email

Definitely Prepare:

Amazon is a web-based company, and
that means they care about scale. Make
sure you prepare for questions in “Large
Scale.” You don’t need a background
in distributed systems to answer these
questions. See our recommendations in
the System Design and Memory Limits
Chapter.

Additionally, Amazon tends to ask a
lot of questions about object oriented
design. Check out the Object Oriented
Design chapter for sample questions and
suggestions.

What’s Unique:

The Bar Raiser, who is brought in from a
different team to keep the bar high.

1 0CareerCup com

Behind the Scenes | The Google Interview

There are many scary stories floating around about Google interviews, but it’s mostly just
that: stories The interview is not terribly different from Microsoft’s or Amazon’s However,
because Google HR can be a little disorganized, we recommend being proactive in com-
munication

A Google engineer performs the first phone screen, so expect tough technical questions
On your on-site interview, you'll interview with four to six people, one of whom will be a
lunch interviewer Interviewer feedback is kept confidential from the other interviewers, so
you can be assured that you enter each interview with blank slate Your lunch interviewer
doesn’t submit feedback, so this is a great opportunity to ask honest questions

Written feedback is submitted to a hiring committee of engineers to make a hire/no-hire
recommendation Feedback is typically broken down into four categories (Analytical Ability,
Coding, Experience and Communication) and you are given a score from 1 0 to 4 0 overall

The hiring committee understands that you can’t be expected to excel in every interview,
but if multiple people raise the same
red flag (arrogance, poor coding skills,
etc), that can disqualify you A hiring
committee typically wants to see one
interviewer who is an “enthusiastic en-
dorser ” In other words, a packet with
scores of 3 6, 3 1, 3 1 and 2 6 is better
than all 3 1s Your phone screen is usu-
ally not a strong factor in the final deci-
sion

The Google hiring process can be slow
If you don’t hear back within one week,
politely ask your recruiter for an up-
date A lack of response says nothing
about your performance

Definitely Prepare:

As a web-based company, Google cares
about how to design a scalable system.
So, make sure you prepare for questions
from “System Design and Memory Limits”
Additionally, many Google interviewers
will ask questions involving Bit Ma-
nipulation, so please brush up on these
questions.

What’s Different:

Your interviewers do not make the hiring
decision. Rather, they enter feedback
which is passed to a hiring committee.
The hiring committee recommends a
decision which can be—though rarely
is—rejected by Google executives.

Cracking the Coding Interview1 1

Behind the Scenes | The Apple Interview

Much like the company itself, Apple’s interview process has minimal beaucracy The inter-
viewers will be looking for excellent technical skills, but a passion for the position and com-
pany is also very important While it’s not a prerequisite to be a Mac user, you should at least
be familiar with the system

The interview process typically begins with a recruiter phone screen to get a basic sense of
your skills, followed up by a series of technical phone screens with team members

Once you’re invited on campus, you'll typically be greeted by the recruiter who provides an
overview of the process You will then have 6-8 interviews with members of the team for
which you’re interviewing, as well as key people with whom your team works

You can expect a mix of 1-on-1 and 2-on-1 interviews Be ready to code on a whiteboard and
make sure all of your thoughts are clearly communicated Lunch is with your potential future
manager and appears more casual, but is still an interview Each interviewer is usually fo-
cused on a different area and is discouraged from sharing feedback unless there’s something
they want subsequent interviewers to
drill into

Towards the end of the day, your inter-
viewers will compare notes and if ev-
eryone still feels you’re a viable candi-
date, you'll interview with the director
and then VP of the organization you’re
applying to While this decision is rath-
er informal, it’s a very good sign if you
make it This decision also happens be-
hind the scenes and if you don’t pass,
you'll simply be escorted out of the
building without ever having been the
wiser (until now)

If you made it to the director and VP
interviews, all of your interviewers will
gather in a conference room to give an
official thumbs up or thumbs down
The VP typically won’t be present, but
can still veto the hire if they weren’t im-
pressed Your recruiter will usually fol-
low up a few days later, but feel free to
ping your recruiter for updates

Definitely Prepare:

If you know what team you’re interview-
ing with, make sure you read up on that
product. What do you like about it? What
would you improve? Offering specific
recommendations can show your passion
for the job.

What’s Unique:

Apple does 2-on-1 interviews often, but
don’t get stressed out about them - it’s
the same as a 1-on-1 interview!

Also, Apple employees are huge Apple
fans. You should show this same passion
in your interview.

1 2CareerCup com

Behind the Scenes | The Yahoo Interview

Resume Selection & Screening: While Yahoo tends to only recruit at the top 10 – 20 schools,
other candidates can still get interviewed through Yahoo’s job board (or – better yet – if they
can get an internal referral) If you’re one of the lucky ones selected, your interview process
will start off with a phone screen Your phone screen will be with a senior employee (tech
lead, manager, etc)

On-Site Interview: You will typically interview with 6 – 7 people on the same team for 45
minutes each Each interviewer will have an area of focus For example, one interviewer
might focus on databases, while another interviewer might focus on your understanding of
computer architecture Interviews will often be composed as follows:

5 minutes: General conversation Tell me about yourself, your projects, etc

20 minutes: Coding question For example, implement merge sort

20 minutes: System design For example, design a large distributed cache These ques-
tions will often focus on an area
from your past experience or on
something your interviewer is cur-
rently working on

Decision: At the end of the day, you
will likely meet with a Program Manag-
er or someone else for a general con-
versation (product demos, concerns
about the company, your competing
offers, etc) Meanwhile, your interview-
ers will discuss your performance and
attempt to come to a decision The
hiring manager has the ultimate say
and will weigh the positive feedback
against the negative

If you have done well, you will often
get a decision that day, but this is not
always the case There can be many
reasons that you might not be told for
several days – for example, the team
may feel it needs to interview several
other people

Definitely Prepare:

Yahoo, almost as a rule, asks questions
about system design, so make sure you
prepare for that. They want to know that
you can not only write code, but that you
can design software. Don’t worry if you
don’t have a background in this - you can
still reason your way through it!

What’s Unique:

Your phone interview will likely be per-
formed by someone with more influence,
such as a hiring manager.

Yahoo is also unusual in that it often gives
a decision (if you’re hired) on the same
day. Your interviewers will discuss your
performance while you meet with a final
interviewer.

Cracking the Coding Interview1 3

Interview War Stories

The View from the Other Side of the Front, by Peter Bailey

For the eager candidate getting ready for a big job interview, Cracking the Coding Interview
is an invaluable reference, containing excellent coaching and prac-
tice material that gives you an inside edge on the interview pro-
cess However, as you go over your old data structures textbook
and drill yourself with homemade discrete math flash cards, don’t
make the mistake of thinking of the interview as a kind of high-
pressure game show – that if you just give all the right answers to
the tech questions, you too can win a shiny new career (this week,
on Who Wants to be a Software Engineer?)

While the technical questions on computer science obviously are
very important, the most important interview question is not cov-
ered in this guidebook In fact, it’s often the single most important

question in your interviewers' minds as they grill you in that little room Despite the ques-
tions on polymorphism and heaps and virtual machines, the question they really want an
answer to is

Would I have a beer with this guy?

Don’t look at me like that, I'm serious! Well, I may be embellishing a little, but hear me out
The point I'm trying to make is that interviewers, especially those that you might work with,
are probably just as anxious as you are Nonsense, you say, as a nervous young professional,
checking your pants for lint while you bite your fingernails, waiting for the interview team to
show up in the front lobby After all, this is the big leagues, and these guys are just waiting for
you to slip up so they can rip you apart, laugh at your shriveled corpse, and grind your career
dreams to dust beneath the heels of their boots

Right? Just like pledge week, back in freshman year? Right? Hmmm?

Nothing could be further from the truth The team of developers and managers interviewing
you have their own tasks and projects waiting for them, back at their own desks Believe me,
they’re hoping that every interview is going to be the last one They'd rather be doing any-
thing else There might be a batch of upcoming projects looming on their calendar, and they
need more manpower if they’re going to even have a prayer of making their deadline But
the last guy the agency sent over was a complete flake who railed about Microsoft’s evil for
half an hour And the one before that couldn’t code his way out of a wet paper bag without
using copy-and-paste Sheesh, they think, where is HR getting these guys? How hard can it
be to hire one lousy person?

While they may not literally be asking themselves “Would I have a beer with this guy (or gal)”,
they are looking to see how well you would fit in with the team, and how you would affect
team chemistry If they hire you, you’re all going to be spending a lot of time together for

1 4CareerCup com

Interview War Stories

the next few months or years, and they want to know that they can rely on you – and maybe
even come to consider you a friend and colleague They want to know that they can depend
on you And as tempting as it might be to them to just settle and hire the next person who
comes along, they know better

In many companies, particularly large U S companies, it’s harder to fire somebody than it is
to hire somebody (Welcome to the US: Land of Lawsuits!) If they hire a dud, they’re stuck
with them That person might be unproductive or, even worse, a drain on the team’s produc-
tivity So they keep interviewing, until they find the right person They know that it’s better
to reject a good candidate than hire a bad one

Some of those interviews are real doozies Once you’ve interviewed long enough, you build
up a repertoire of horror stories War stories, of candidates who looked promising on paper
until the interviews went terribly, terribly wrong These war stories are not only humorous –
they’re also instructive

Names have been changed to protect the innocent – or downright ridiculous.

2.1 zyxwvutsrqponmlkjihgfedcba

2.2 ZYXWVUTSRQPONMLKJIHGFEDCBA

2.3 spw~~kjlslen

2.4 0987654321+_=-)(*&^%$#@!`~[]{};':”,./<>?

2.5 ABCDEZYXW

2.6 abcdeyxw

2.7 asdabcdezyxwasdf

2.8 ~~

Cracking the Coding Interview1 5

Interview War Stories | Pop Divas

Pop Divas Need Not Apply

Leonard was a very promising C++ coder, three years out of college, with a solid work history
and an impressive skill set He proved on the phone screen that he was above-average tech-
nically, and so he was invited in for an interview We needed a savvy C++ person to work on
a piece of middleware that interfaced with our database, and Leonard seemed like a sure fit

However, once we started talking to him, things went south in a hurry He spent most of the
interview criticizing every tool and platform that we questioned him on We used SQL Server
as our database? Puhleease We were planning to switch to Oracle soon, right? What’s that?
Our team used Tool A to do all our coding in? Unacceptable He used Tool B, and only Tool
B, and after he was hired, we'd all have to switch to Tool B And we'd have to switch to Java,
because he really wanted to work with Java, despite the fact that 75 percent of the codebase
would have to be rewritten We'd thank him later And oh, by the way, he wouldn’t be making
any meetings before ten o'clock

Needless to say, we encouraged Leonard to seek opportunities elsewhere It wasn’t that his
ideas were bad – in fact, he was “technically” right about many things, and his (strong) opin-
ions were all backed with solid fact and sound reason (except for the ten o'clock thing – we
think he may have just been making a “power play”) But it was obvious that, if hired, Leonard
wasn’t going to play well with others – he would have been toxic kryptonite for team chem-
istry He actually managed to offend two of the team members during the forty-five minutes
of his interview Leonard also made the mistake of assuming that Code Purity and Algorithm
Beauty were always more important than a business deadline

In the real world, there are always compromises to be made, and knowing how to work with
the business analysts is just as important as knowing how to refactor a blob of code If Leon-
ard would not have gotten along with other IT people, he definitely wouldn’t have gotten
along with the business folks Maybe you can get away with hiring a Leonard if he’s one of the
best ten coders in the world (he wasn’t) But he was the classic failure example for the “Would
you have a beer with this guy?” test

1 6CareerCup com

Interview War Stories | Failure to Communicate

What We Have Here is Failure to Communicate

Trisha was a mid-level Java developer with a solid history of middleware and JSP work on her
resume Since she was local, we invited her in for an interview without a phone screen When
we started asking her questions, it quickly became obvious that Trisha was a woman of few
words Her answers were short and often composed of “yes/no” responses, even to questions
that were meant to start a dialog Once she did start opening up, I still wasn’t sure she was
actually talking I saw her lips moving, and heard mumbling sounds coming out, but it wasn’t
anything that sounded like English

I'm not sure if Trisha was nervous or just shy, but either way, I had to ask her numerous times
to repeat herself Now I was the one getting nervous! I didn’t want to be the guy who “ruined”
the interview, so I pulled back on my questions The other folks in the room and I exchanged
uneasy glances We felt like we were on a Seinfeld episode It was almost impossible to under-
stand Trisha, and when she did speak up, her halting, uncertain, confused speech patterns
made us feel more like code breakers than interviewers I am not exaggerating to say that I
did not understand a single answer she gave during the interview

Knowing, alone, isn’t good enough You’re going to be talking with other technical people,
and you’re going to be talking to customers, and sales reps, and Betty from Marketing You
will write something eventually, whether it’s documentation, or a project plan, or a require-
ments document The word processor might correct your spelling, but it won’t correct your
lousy writing The ability to communicate thoughts and ideas, in a clear, concise manner, is
an absolutely invaluable skill that employers seek

The same goes for verbal communication I used to work with a co-worker who doubled the
length of every meeting he was in, because he could not answer a question in less than ten
minutes “Hey, Dennis, what time is it?” “Well, that’s kind of interesting, because I just hap-
pened to be reading an article on cesium clocks and leap seconds and the history of the
Gregorian Calendar and ”

I'll spare you the rest

Cracking the Coding Interview1 7

Interview War Stories | You Can (Maybe) Count On Me

You Can Count on Me, Just Not Until Early Afternoon

Ahhh, 1999 The crest of the dot-com bubble, and the tightest labor market in history Our
company was racing to expand its development team, and we would have hired a German
Shepherd if it knew HTML Instead, we wound up hiring Ian We should’ve hired the dog

Ian was a cheerful, friendly guy who had a gift of natural charisma He got along fantasti-
cally with all of the interviewers, and seemed very intelligent Skill-wise, he was adequate He
hadn’t written a single line of computer code outside of his college courses, and didn’t even
have his own e-mail address When we gave Ian the chance to ask us questions at the end of
the interview, he asked about flexible work hours, and how soon he could take vacation time
Instead of showing an interest in the career opportunities, or in company’s growth prospects,
he asked whether he could take the all-you-could-drink break room soda home with him
The questions grew more bizarre from there

Ian was very interested in our Legal Assistance benefit He wanted to know if it covered the
cost of filing lawsuits, if it covered him if he got sued himself, if it applied to any lawsuits he
currently was involved in, and if he could “theoretically” use it to sue the company itself. He
also asked us if he could use it to help him “fix” some unpaid speeding tickets

In any other year, that should have been it for Ian right there But, in 1999, we were hiring
anybody who was even remotely competent Ian collected paychecks from us for eighteen
months, and he was about as productive as a traffic cone He usually sauntered into the office
around ten-thirty with some sort of lame excuse (by my count, he had to wait for the cable
guy sixteen times in a six-month period) He usually killed the morning by answering e-mail
and playing ping-pong, before breaking for a two-hour lunch After lunch, it was more ping-
pong, and maybe an hour of writing bad code, before bolting the office sometime around
three He was the dictionary definition of unreliable

Remember, your potential future team members need to know that they can rely on you
And they need to know that you won’t need constant supervision and hand-holding They
need to know that you’re able to figure things out on your own One of the most important
messages that you, as a candidate, can convey in your interview is hiring me will make your
lives easier In fact, this is a large part of the reason for the famously difficult interview ques-
tions at places like Amazon and Google; if you can handle that kind of unpredictable pres-
sure in an interview, then you stand a good chance of being useful to them on real projects

To cite a more subtle example, once I was on a four person team that was desperately try-
ing to recruit new members to help work on an old pile of software It was a real mess; we'd
inherited a nasty ball of spaghetti, and we needed people who could jump in, figure things
out, and be part of the solution

There was one very smart fellow, Terry, who would have been a great asset for our team –
but we didn’t hire him, despite his excellent technical and personal skills It was because he

1 8CareerCup com

Interview War Stories | You Can (Maybe) Count On Me

insisted on meticulous written instructions for every step of the coding process He wasn’t
going to make a suggestion or take any initiative – or blow his nose, for that matter – without
a mile-long audit trail and a dozen signatures While he insisted that he worked that way for
reasons of quality (a defensible point), we got the impression that it had more to do with
butt-covering, and we simply didn’t have the time for that kind of bureaucracy Terry would
have been an excellent fit in a government or aerospace IT department, something that re-
quired ISO 9000 procedures But he would have never fit into our team; he would have been
a burden, not an asset

Cracking the Coding Interview1 9

Interview War Stories | Spider Senses

My Spider Senses are Tingling

I can think of lots of interviews that just fell into the general category of weird and uncomfort-
able:

 » The Java coder who apparently considered hygiene optional, and had the interview
room smelling like week-old blue cheese within ten minutes (my eyes were watering)

 » The young fresh-out-of-college graduate with a tongue piercing that kept tick-tick-tick-
ing against his teeth as he talked (after half an hour, it was like Chinese water torture)

 » The girl who wore an iPod through her interview, with the volume turned loud enough
that she actually had to ask the interviewers to repeat themselves a few times

 » The poor, hyper-nervous fellow who was sweating like a marathon runner for half an
hour

 » The girl who wore a T-shirt with an obscene political slogan to her interview

 » The guy who asked (seriously) at the end of his interview, “So, are there any hot chicks
in our department?”

Those are the interviews where we politely thank the people for their time, shake their hand
(except for the sweaty guy), then turn to each other after the door closes and ask – did that
really just happen?

Nobody is saying that you have to be a bland, boring robot in a Brooks Brothers suit and
tie Remember, the interview team wants you to be “the one”, but they’re also very worried
about the possibility that you’re going to be more of a distraction than an asset Don’t talk or
behave in a way that will set off their early warning radar Whether or not somebody bothers
to behave professionally during an interview is often a very good indicator of what kind of
teammate they’re going to be

Rudimentary social skills are part of the answer to “Would I have a beer with this guy?”, or
at least, “Will I mind working next to this guy for six months?” From the interviewer’s point
of view, they’re picking a neighbor that they’re going to live and work with 200 hours per
month for foreseeable future Would you really want a neighbor that smelled like a hog ren-
dering plant?

Before the Interview

Cracking the Coding Interview2 1

Before the Interview | Resume Advice

What Resume Screeners Look For

Resume screeners look for the same things that interviewers do:

 » Are you smart?

 » Can you code?

That means that you should present your resume to show those two things Your love of
tennis, traveling, or magic cards won’t do much to show that, so it’s likely just wasting space

Keep in mind that recruiters only spend a fixed amount of time (about 20 seconds) looking
at your resume If you limit the content to the best, most impressive, most relevant items,
they’ll jump out at the recruiter Weak items only dilute your resume and distract the re-
cruiter from what you’d like them to see

Employment History

Relevant Jobs: Your resume does not
- and should not - include a full history
of every role you’ve ever had Your job
serving ice cream, for example, will not
show that you’re smart or that you can
code Include only the relevant things

Writing Strong Bullets: For each role,
try to discuss your accomplishments
with the following approach: “Accom-
plished X by implementing Y which led
to Z ” Here’s an example:

 » “Reduced object rendering time
by 75% by applying Floyd’s algo-
rithm, leading to a 10% reduction
in system boot time ”

Here’s another example with an alter-
nate wording:

 » “Increased average match accu-
racy from 1 2 to 1 5 by implement-
ing a new comparison algorithm
based on windiff ”

Not everything you did will fit into
this approach, but the principle is the

Got some extra time to prepare?

If you have at least a couple months
before an interview (or if you’re in school
and not graduating yet), you may be able
to improve your resume.

Go out and get project experience! Take
course that have major projects. Get
involved in open source. Ask a professor if
there is any research you can get involved
in, or ask if he/she can sponsor you on an
independent study.

This will put you in a better position to
have your resume selected down the
road. It will also give you lots of things to
talk about in an interview.

2 2CareerCup com

Before the Interview | Resume Advice

same: show what you did, how you did it, and what the results were Ideally, you should try
to make the results “measurable” somehow

Projects

Almost every candidate has some projects, even if they’re just academic projects List them
on your resume! I recommend putting a section called “Projects” on your resume and list
your 2 - 4 most significant projects State what the project was, which languages or tech-
nologies it employed, and whether it was an individual or a team project If your project
was not for a course, that’s even better! It shows passion, initiative, and work ethic You can
state the type of project by listing course projects as “Course Project” and your independent
projects as “Independent Projects” (or some other wording)

Programming Languages and Software

Software: Generally speaking, I do not recommend listing that you’re familiar with Microsoft
Office Everyone is, and it just dilutes the “real” information Familiarity with developer-spe-
cific or highly technical software (e g , Visual Studio, Eclipse, Linux) can be useful, but it often
doesn’t make much of a difference

Languages: Knowing which languages to list on your resume is always a tricky thing Do
you list everything you’ve ever worked with? Or only the ones that you’re more comfortable
with (even though that might only be one or two languages)? I recommend the following
compromise: list most languages you’ve used, but add your experience level This approach
is shown below:

 » “Languages: Java (expert), C++ (proficient), JavaScript (prior experience), C (prior expe-
rience)”

Advice for Non-Native English Speakers and Internationals

Proofreading: Some companies will throw out your resume just because of a typo Please
get at least one native English speaker to proofread your resume

Personal Information: For US positions, do not include age, marital status, or nationality
This sort of personal information is not appreciated by companies, as it creates a legal liabil-
ity for them However, you may want to include your current work authorization / visa status,
particularly when applying to smaller companies who may be unable to sponsor candidates

Cracking the Coding Interview2 3

Before the Interview | Behavioral Preparation

Why Are Behavioral Questions Asked?

Behavioral questions are asked for a variety of reasons They can be asked either to get to
know your personality, to more deeply understand your resume, or just to ease you into an
interview Either way, these questions are important and can be prepared for

How To Prepare

Behavioral questions are usually of the form “tell me about a time when you ”, and may
ask for an example from a specific project or position I recommend filling in the following
“preparation grid” as shown below:

Project 1 Project 2 Project 3 Project 4
Most Challenging

What You Learned

Most Interesting

Hardest Bug

Enjoyed Most

Conflicts with Teammates

Along the top, as columns, you should list all the major aspects of your resume – e g , your
projects, jobs, or activities Along the side, as rows, you should list the common questions –
e g , what you enjoyed most, what you enjoyed least, what you considered most challenging,
what you learned, what the hardest bug was, etc In each cell, put the corresponding story

We recommend reducing each story to just a couple keywords that you can write in each cell
This will make the grid easier to study

In your interview, when you’re asked about a project, you’ll be able to come up with an ap-
propriate story effortlessly Study this grid before your interview

NOTE: If you’re doing a phone interview, you may want to have this grid out in front of you

Some additional advice:

1 When asked about your weaknesses, give a real weakness! Answers like “My great-
est weakness is that I work too hard / am a perfectionist / etc” tell your interviewer
that you’re arrogant and/or won’t admit to your faults No one wants to work with
someone like that A better answer conveys a real, legitimate weakness but empha-
sizes how you work to overcome it For example: “Sometimes, I don’t have a very good
attention to detail While that’s good because it lets me execute quickly, it also means
that I sometimes make careless mistakes Because of that, I make sure to always have
someone else double check my work ”

2 4CareerCup com

Before the Interview | Behavioral Preparation

2 When asked what the most challenging part was, don’t say “I had to learn a lot of new
languages and technologies ” This is the “cop out” answer (e g , you don’t know what
else to say) It tells the interviewer that nothing was really that hard

3 Remember: you’re not just answering their questions, you’re telling them about your-
self! Many people try to just answer the questions Think more deeply about what
each story communicates about you

4 If you think you’ll be asked behavioral questions (e g , “tell me about a challenging
interaction with a team member”), you should create a Behavioral Preparation Grid
This is the same as the one above, but the left side contains things like “challenging
interaction”, “failure”, “success”, and “influencing people ”

What questions should you ask the interviewer?

Most interviewers will give you a chance to ask them questions The quality of your ques-
tions will be a factor, whether subconsciously or consciously, in their decisions

Some questions may come to you during the interview, but you can - and should - prepare
questions in advance Doing research on the company or team may help you with preparing
questions

Questions can be divided into three different categories:

Genuine Questions: These are the questions you actually want to know Here are a few
ideas of questions that are valuable to many candidates:

1 “How much of your day do you spend coding?”

2 “How many meetings do you have every week?”

3 “What is the ratio of testers to developers to product managers? What is the interac-
tion like? How does project planning happen on the team?”

Insightful Questions: These questions are designed to demonstrate your deep knowledge
of programming or technologies

1 “I noticed that you use technology X How do you handle problem Y?”

2 “Why did the product choose to use the X protocol over the Y protocol? I know it has
benefits like A, B, C, but many companies choose not to use it because of issue D ”

Passion Questions: These questions are designed to demonstrate your passion for technol-
ogy

1 “I’m very interested in scalability Did you come in with a background in this, or what
opportunities are there to learn about it?”

2 “I’m not familiar with technology X, but it sounds like a very interesting solution
Could you tell me a bit more about how it works?”

Cracking the Coding Interview2 5

Before the Interview | Technical Preparation

How to Prepare for Technical Questions

You’ve purchased this book, so you’ve already gone a long way towards good preparation
Nice work!

That said, there are better and worse ways to prepare Many candidates just read through
problems and solutions Don’t do that! Memorizing or trying to learn specific questions
won’t help you! Rather, do this:

1 Try to solve the problem on your own I mean, really try to solve it Many questions
are designed to be tough - that’s ok! When you’re solving a problem, make sure to
think about the space and time efficiency Ask yourself if you could improve the time
efficiency by reducing the space efficiency, or vice versa

2 Write the code for the algorithm on paper You’ve been coding all your life on a com-
puter, and you’ve gotten used to the many nice things about it But, in your interview,
you won’t have the luxury of syntax highlighting, code completion, or compiling
Mimic this situation by coding on paper

3 Type your paper code as-is into a computer You’ll probably have made a bunch of
mistakes Start a list of all the mistakes you made, so that you can keep these in mind
in the real interview

4 Do a mock interview CareerCup offers a mock interview service, or you can grab a
friend to ask you questions Though your friend may not be an expert interviewer, he
or she may still be able to walk you through a coding or algorithm question

2 6CareerCup com

Before the Interview | Technical Preparation

What You Need To Know

Most interviewers won’t ask about specific algorithms for binary tree balancing or other
complex algorithms Frankly, they probably don’t remember these algorithms either

You’re usually only expected to know the basics Here’s a list of the absolute must-have
knowledge:

Data Structures Algorithms Concepts
Linked Lists Breadth First Search Bit Manipulation

Binary Trees Depth First Search Singleton Design Pattern

Tries Binary Search Factory Design Pattern

Stacks Merge Sort Memory (Stack vs Heap)

Queues Quick Sort Recursion

Vectors / ArrayLists Tree Insert / Find / etc Big-O Time

Hash Tables

This is not, of course, an all-inclusive list Questions may be asked on areas outside of these
topics This is merely a “must know” list

For each of the topics, make sure you understand how to implement / use them, and (where
applicable) the space and time complexity

Practicing implementing the data structures and algorithms You might be asked to imple-
ment them in your interview, or you might be asked to implement a modification of them
Either way, the more comfortable you are with implementations the better

Do you need to know details of C++, Java, etc?

While I personally never liked asking these sorts of questions (e g , “what is a vtable?”), many
interviewers regretfully do ask them For big companies like Microsoft, Google, Amazon, etc,
I wouldn’t stress too much about these questions Look up the most common questions and
make sure you have answers to them, but I would focus on data structures and algorithms
preparation

At smaller companies, or non-software companies, these questions can be more important
Look up your company on CareerCup com to decide for yourself If your company isn’t listed,
look up a similar company as a reference

The Interview and Beyond

Cracking the Coding Interview2 9

At the Interview | Handling Behavioral Questions

Why Behavioral Questions

As stated earlier, interviews usually start and end with “chit chat” or “soft skills ” This is a time
to answer questions about your resume or general questions, and also an opportunity for
you to ask questions This part of the interview is targeted not only at getting to know you,
but also at relaxing you

Be Specific, Not Arrogant

Arrogance is a red flag, but you still want to make yourself sound impressive So how do you
make yourself sound good without being arrogant? By being specific!

Specificity means giving just the facts and letting the interviewer derive an interpretation
Consider an example:

 » Candidate #1: “I basically did all the hard work for the team ”

 » Candidate #2: “I implemented the file system, which was considered one of the most
challenging components because …”

Candidate #2 not only sounds more impressive, but she also appears less arrogant

Limit Details

When a candidate blabbers on about a problem, it’s hard for an interviewer who isn’t well
versed in the subject or project to understand it CareerCup recommends that you stay light
on details and just state the key points That is, consider something like this: “By examining
the most common user behavior and applying the Rabin-Karp algorithm, I designed a new
algorithm to reduce search from O(n) to O(log n) in 90% of cases I can go into more details
if you’d like ” This demonstrates the key points while letting your interviewer ask for more
details if he wants to

Ask Good Questions

Remember those questions you came up with while preparing? Now is a great time to use
them!

Structure Answers Using S A R

Structure your responses using S A R : Situation, Action, Response That is, you should start
off outlining the situation, then explaining the actions you took, and lastly, describing the
result

Example: “Tell me about a challenging interaction with a teammate.”

 » Situation: On my operating systems project, I was assigned to work with three other

3 0CareerCup com

At the Interview | Handling Behavioral Questions

people While two were great, the third team member didn’t contribute much He
stayed quiet during meetings, rarely chipped in during email discussions, and struggled
to complete his components

 » Action: One day after class, I pulled him aside to speak about the course and then
moved the discussion into talking about the project I asked him open-ended questions
on how he felt it was going, and which components he was excited about tackling He
suggested all the easiest components, and yet offered to do the write-up I realized then
that he wasn’t lazy – he was actually just really confused about the project and lacked
confidence I worked with him after that to break down the components into smaller
pieces, and I made sure to complement him a lot on his work to boost his confidence

 » Result: He was still the weakest member of the team, but he got a lot better He was
able to finish all his work on time, and he contributing more in discussions We were
happy to work with him on a future project

As you can see, the SAR model helps an interviewer clearly see what you did in a certain situ-
ation and what the result was

Cracking the Coding Interview3 1

At the Interview | Handling Technical Questions

General Advice for Technical Questions

Interviews are supposed to be difficult If you don’t get every – or any – answer immediately,
that’s ok! In fact, in my experience, maybe only 10 people out of the 120+ that I’ve inter-
viewed have gotten the question right instantly

So when you get a hard question, don’t panic Just start talking aloud about how you would
solve it

And, one more thing: you’re not done until the interviewer says that you’re done! What I
mean here is that when you come up with an algorithm, start thinking about the problems
accompanying it When you write code, start trying to find bugs If you’re anything like the
other 110 candidates that I’ve interviewed, you probably made some mistakes

Five Steps to a Technical Questions

A technical interview question can be solved utilizing a five step approach:

1 Ask your interviewer questions to resolve ambiguity

2 Design an Algorithm

3 Write pseudo-code first, but make sure to tell your interviewer that you’re writing
pseudo-code! Otherwise, he/she may think that you’re never planning to write “real”
code, and many interviewers will hold that against you

4 Write your code, not too slow and not too fast

5 Test your code and carefully fix any mistakes

Step 1: Ask Questions

Technical problems are more ambiguous than they might appear, so make sure to ask ques-
tions to resolve anything that might be unclear or ambiguous You may eventually wind up
with a very different – or much easier – problem than you had initially thought In fact, many
interviewers (especially at Microsoft) will specifically test to see if you ask good questions

Good questions might be things like: What are the data types? How much data is there?
What assumptions do you need to solve the problem? Who is the user?

Example: “Design an algorithm to sort a list ”

 » Question: What sort of list? An array? A linked list?

 » Answer: An array

 » Question: What does the array hold? Numbers? Characters? Strings?

 » Answer: Numbers

3 2CareerCup com

At the Interview | Handling Technical Questions

 » Question: And are the numbers integers?

 » Answer: Yes

 » Question: Where did the numbers come from? Are they IDs? Values of something?

 » Answer: They are the ages of customers

 » Question: And how many customers are there?

 » Answer: About a million

We now have a pretty different problem: sort an array containing a million integers between
0 and 130 How do we solve this? Just create an array with 130 elements and count the num-
ber of ages at each value

Step 2: Design an Algorithm

Designing an algorithm can be tough, but our five approaches to algorithms can help you
out (see pg 34) While you’re designing your algorithm, don’t forget to think about:

 » What are the space and time complexities?

 » What happens if there is a lot of data?

 » Does your design cause other issues? (i e , if you’re creating a modified version of a bi-
nary search tree, did your design impact the time for insert / find / delete?)

 » If there are other issues, did you make the right trade-offs?

 » If they gave you specific data (e g , mentioned that the data is ages, or in sorted order),
have you leveraged that information? There’s probably a reason that you’re given it

Step 3: Pseudo-Code

Writing pseudo-code first can help you outline your thoughts clearly and reduce the number
of mistakes you commit But, make sure to tell your interviewer that you’re writing pseudo-
code first and that you’ll follow it up with “real” code Many candidates will write pseudo-
code in order to ‘escape’ writing real code, and you certainly don’t want to be confused with
those candidates

Step 4: Code

You don’t need to rush through your code; in fact, this will most likely hurt you Just go at a
nice, slow methodical pace Also, remember this advice:

 » Use Data Structures Generously: Where relevant, use a good data structure or define
your own For example, if you’re asked a problem involving finding the minimum age
for a group of people, consider defining a data structure to represent a Person This

Cracking the Coding Interview3 3

At the Interview | Handling Technical Questions

shows your interviewer that you care about good object oriented design

 » Don’t Crowd Your Coding: This is a minor thing, but it can really help When you’re writ-
ing code on a whiteboard, start in the upper left hand corner – not in the middle This
will give you plenty of space to write your answer

Step 5: Test

Yes, you need to test your code! Consider testing for:

 » Extreme cases: 0, negative, null, maximums, etc

 » User error: What happens if the user passes in null or a negative value?

 » General cases: Test the normal case

If the algorithm is complicated or highly numerical (bit shifting, arithmetic, etc), consider
testing while you’re writing the code rather than just at the end

Also, when you find mistakes (which you will), carefully think through why the bug is oc-
curing One of the worst things I saw while interviewing was candidates who recognized a
mistake and tried making “random” changes to fix the error

For example, imagine a candidate writes a function that returns a number When he tests his
code with the number ‘5’ he notices that it returns 0 when it should be returning 1 So, he
changes the last line from “return ans” to “return ans+1,” without thinking through why this
would resolve the issue Not only does this look bad, but it also sends the candidate on an
endless string of bugs and bug fixes

When you notice problems in your code, really think deeply about why your code failed be-
fore fixing the mistake

3 4CareerCup com

At the Interview | Five Algorithm Approaches

Five Algorithm Approaches

There’s no sure fire approach to solving a tricky algorithm problem, but the approaches be-
low can be useful Keep in mind that the more problems you practice, the easier it will to
identify which approach to use

Also, remember that the five approaches can be “mixed and matched ” That is, once you’ve
applied “Simplify & Generalize”, you may want to implement Pattern Matching next

APPROACH I: EXAMPLIFY

Description: Write out specific examples of the problem, and see if you can figure out a gen-
eral rule

Example: Given a time, calculate the angle between the hour and minute hands

Approach: Start with an example like 3:27 We can draw a picture of a clock by selecting
where the 3 hour hand is and where the 27 minute hand is

By playing around with these examples, we can develop a rule:

 » Minute angle (from 12 o’clock): 360 * minutes / 60

 » Hour angle (from 12 o’clock): 360 * (hour % 12) / 12 + 360 * (minutes / 60) * (1 / 12)

 » Angle between hour and minute: (hour angle - minute angle) % 360

By simple arithmetic, this reduces to 30 * hours - 5 5 * minutes

APPROACH II: PATTERN MATCHING

Description: Consider what problems the algorithm is similar to, and figure out if you can
modify the solution to develop an algorithm for this problem

Example: A sorted array has been rotated so that the elements might appear in the order 3 4
5 6 7 1 2 How would you find the minimum element?

Similar Problems:

 » Find the minimum element in an array

 » Find a particular element in an array (eg, binary search)

Algorithm:

Finding the minimum element in an array isn’t a particularly interesting algorithm (you could
just iterate through all the elements), nor does it use the information provided (that the array
is sorted) It’s unlikely to be useful here

However, binary search is very applicable You know that the array is sorted, but rotated So,
it must proceed in an increasing order, then reset and increase again The minimum element
is the “reset” point

Cracking the Coding Interview3 5

At the Interview | Five Algorithm Approaches

If you compare the first and middle element (3 and 6), you know that the range is still increas-
ing This means that the reset point must be after the 6 (or, 3 is the minimum element and
the array was never rotated) We can continue to apply the lessons from binary search to
pinpoint this reset point, by looking for ranges where LEFT > RIGHT That is, for a particular
point, if LEFT < RIGHT, then the range does not contain the reset If LEFT > RIGHT, then it
does

APPROACH III: SIMPLIFY & GENERALIZE

Description: Change a constraint (data type, size, etc) to simplify the problem Then try to
solve it Once you have an algorithm for the “simplified” problem, generalize the problem
again

Example: A ransom note can be formed by cutting words out of a magazine to form a new
sentence How would you figure out if a ransom note (string) can be formed from a given
magazine (string)?

Simplification: Instead of solving the problem with words, solve it with characters That is,
imagine we are cutting characters out of a magazine to form a ransom note

Algorithm:

We can solve the simplified ransom note problem with characters by simply creating an array
and counting the characters Each spot in the array corresponds to one letter First, we count
the number of times each character in the ransom note appears, and then we go through the
magazine to see if we have all of those characters

When we generalize the algorithm, we do a very similar thing This time, rather than creating
an array with character counts, we create a hash table Each word maps to the number of
times the word appears

APPROACH IV: BASE CASE AND BUILD

Description: Solve the algorithm first for a base case (e g , just one element) Then, try to
solve it for elements one and two, assuming that you have the answer for element one Then,
try to solve it for elements one, two and three, assuming that you have the answer to ele-
ments one and two

Example: Design an algorithm to print all permutations of a string For simplicity, assume all
characters are unique

Test String: abcdefg
Case “a” --> {a}
Case “ab” --> {ab, ba}
Case “abc” --> ?

This is the first “interesting” case If we had the answer to P(“ab”), how could we generate
P(“abc”) Well, the additional letter is “c”, so we can just stick c in at every possible point That

3 6CareerCup com

At the Interview | Five Algorithm Approaches

is:
merge(c, ab) --> cab, acb, abc
merge(c, ba) --> cba, bca, bac

Algorithm: Use a recursive algorithm Generate all permutations of a string by “chopping off”
the last character and generating all permutations of s[1… n-1] Then, insert s[n] into every
location of the string

NOTE: Base Case and Build Algorithms often lead to natural recursive algorithms

APPROACH V: DATA STRUCTURE BRAINSTORM

Description: This is hacky, but it often works Simply run through a list of data structures and
try to apply each one

Example: Numbers are randomly generated and stored into an (expanding) array How
would you keep track of the median?

Data Structure Brainstorm:

 » Linked list? Probably not – linked lists tend not to do very well with accessing and sort-
ing numbers

 » Array? Maybe, but you already have an array Could you somehow keep the elements
sorted? That’s probably expensive Let’s hold off on this and return to it if it’s needed

 » Binary tree? This is possible, since binary trees do fairly well with ordering In fact, if the
binary search tree is perfectly balanced, the top might be the median But, be careful – if
there’s an even number of elements, the median is actually the average of the middle
two elements The middle two elements can’t both be at the top This is probably a
workable algorithm, but let’s come back to it

 » Heap? A heap is really good at basic ordering and keeping track of max and mins This
is actually interesting – if you had two heaps, you could keep track of the biggest half
and the smallest half of the elements The biggest half is kept in a min heap, such that
the smallest element in the biggest half is at the root The smallest half is kept in a max
heap, such that the biggest element of the smallest half is at the root Now, with these
data structures, you have the potential median elements at the roots If the heaps are
no longer the same size, you can quickly “rebalance” the heaps by popping an element
off the one heap and pushing it onto the other

Note that the more problems you do, the better instinct you will develop about which data
structure to apply

Cracking the Coding Interview3 7

At the Interview | The Offer and Beyond

Congrats! You got the offer!

If you’re lucky enough to get an offer (and you will be!), congratulations! You may now be
stressing over which offer to accept and all that fun stuff, so just remember that most likely,
all of your options are great and you’ll be happy at any of them

As far as which offer to take, well, we could tell you that money isn’t that important and blah
blah blah… but we’ll skip over that and let you make your own decision about the impor-
tance of money We have some other advice for you

Negotiating

It’s Always Negotiable! Ok, maybe not always, but usually an offer is negotiable even if a
recruiter tells you otherwise It helps if you have a competing offer But, don’t lie – Microsoft
knows what Google offers, so it just won’t be realistic if you make up numbers Also, technol-
ogy is a small world, and people talk Be honest

What’s the money like, really?

Think about the full offer package Many companies will have impressive salaries, but small
annual bonuses Other companies will have huge annual bonuses, but lower salaries Make
sure you look at the full package (salary, signing bonus, health care benefits, raises, annual
bonus, relocation, stock, promotions, etc) It’s very confusing, and it’s often not clear which
company is offering more

What about your career options?

Even if money is all that matters, think about the long term career If you’re lucky enough to
have several offers to pick from, consider how each one will impact your long term career
The company with the lowest salary but where you’ll learn the most may just be the best
move, even financially

I can’t give you some magical formula to compute which offer to accept, but here’s what I’d
recommend thinking about (in no particular order):

 » Career Path: Make a plan for your career What do you want to do 5, 10 and 15 years
out? What skills will you need to develop? Which company or position will help you
get there?

 » Promotion Opportunity: Do you prefer to move into management, or would you prefer
to become an increasingly senior developer?

 » Money and Benefits: Of course, the money matters (but if you’re early in your career, it
probably doesn’t matter much) As mentioned above, make sure you look at the full
package

3 8CareerCup com

At the Interview | The Offer and Beyond

 » Happiness: Did you like the people? The products? The location? It’s hard to tell, of
course, before you work there What are the options to change teams if you’re unhappy?

 » Brand Name: The company’s brand name can mean a lot for your future career Some
company names will open doors, while others will not as much

What about company stability? Personally, I think it matters much less than
most people think. There are so many software companies out there. If you get
laid off and need to find a new job, will it be difficult to find a new one? Only you
can answer that.

On the job, and beyond

Before starting at a company, make a career plan What would you like your career to look
like? What will it take to get there? Make sure you check in on your career plan regularly and
are on track

It’s very easy, particularly at the big companies, to get sucked into staying for a while They’re
great companies with lots of perks, and most people are truly quite happy there If what you
want is to stay an engineer for life, then there is absolutely nothing wrong with that

However, if you want to run a company one day, or move up into management, you should
stop and check your career plan Is another year at your job going to help you get there? Or
is it time to move? You, and only you, can decide

Cracking the Coding Interview3 9

At the Interview | Top Ten Mistakes Candidates Make

#1 | Practicing on a Computer

If you were training for a serious bike race in the mountains, would you practice only by bik-
ing on the streets? I hope not The air is different The terrain is different Yeah, I bet you’d
practice in the mountains

Using a compiler to practice interview questions is like this - and you’ve basically been biking
on the streets your entire life Put away the compiler and get out the old pen and paper Use
a compiler only to verify your solutions

#2 | Not Rehearsing Behavioral Questions

Many candidates spend all their time prepping for technical questions and overlook the be-
havioral questions Guess what? Your interviewer is judging those too! And, not only that
- your performance on behavioral questions might bias your interviewer’s perception of your
technical performance Behavioral prep is relatively easy and well-worth your time Looking
over your projects and positions and think of the key stories Rehearse the stories See
pg 29 for more details

#3 | Not Doing a Mock Interview

Imagine you’re preparing for a big speech Your whole school, or company, or whatever will
be there Your future depends on this And all you do to prepare is read the speech to your-
self Silently In your head Crazy, right?

Not doing a mock interview to prepare for your real interview is just like this If you’re an
engineer, you must know other engineers Grab a buddy and ask him/her to do a mock
interview for you You can even return the favor!

#4 | Trying to Memorize Solutions

Quality beats quantity Try to struggle through and solve questions yourself; don’t flip di-
rectly to the solutions when you get stuck Memorizing how to solve specific problem isn’t
going to help you much in an interview Real preparation is about learning how to approach
new problems

#5 | Talking Too Much

I can’t tell you how many times I’ve asked candidates a simple question like “what was the
hardest bug on Project Pod?”, only to have them ramble on and on about things I don’t un-
derstand Five minutes later, when they finally come up for air, I’ve learned nothing - except
that they’re a poor communicator When asked a question, break your answer into three
parts (Situation / Action / Response, Issue 1 / Issue 2 / Issue 3, etc) and speak for just a couple
sentences about each If I want more details, I’ll ask!

4 0CareerCup com

At the Interview | Top Ten Mistakes Candidates Make

#6 | Talking Too Little

Psst - let me tell you a secret: I don’t know what’s going on in your head So if you aren’t talk-
ing, I don’t know what you’re thinking If you don’t talk for a long time, I’ll assume that you
aren’t making any progress Speak up often, and try to talk your way through a solution This
shows your interviewer that you’re tackling the problem and aren’t stuck And it lets them
guide you when you get off-track, helping you get to the answer faster And it shows your
awesome communication skills What’s not to love?

#7 | Rushing

Coding is not a race, and neither is interviewing Take your time in a coding problem - don’t
rush! Rushing leads to mistakes, and reveals you to be careless Go slowly and methodically,
testing often and thinking through the problem thoroughly You’ll finish the problem in less
time in the end, and with fewer mistakes

#8 | Not Debugging

Would you ever write code and not run it or test it? I would hope not! So why do that in an
interview? When you finish writing code in an interview, “run” (or walk through) the code to
test it Or, on more complicated problems, test the code while writing it

#9 | Sloppy Coding

Did you know that you can write bug-free code while still doing horribly on a coding ques-
tion? It’s true! Duplicated code, messy data structures (i e , lack of object oriented design),
etc Bad, bad, bad! When you write code, imagine you’re writing for real-world maintain-
ability Break code into sub-routines, and design data structures to link appropriate data

#10 | Giving Up

Have you ever taken a computer adaptive test? These are tests that give you harder ques-
tions the better you do Take it from me - they’re not fun Regardless of how well you’re actu-
ally doing, you suddenly find yourself stumbling through problems Yikes!

Interviewing is sort of like this If you whiz through the easy problems, you’re going to get
more and harder problems Or, the questions might have just started out hard to begin with!
Either way, struggling on a question does not mean that you’re doing badly So don’t give up
or get discouraged You’re doing great!

Cracking the Coding Interview4 1

At the Interview | Frequently Asked Questions

Do I have to get every question right?

No A good interviewer will stretch your mind They’ll want to see you struggle with a dif-
ficult problem If a candidate is good, they’ll ask harder and tougher questions until he/she
is stumped! Thus, if you have trouble on a question, all it means is that the interviewer is
doing their job!

Should I tell my interviewer if I know a question?

Yes! You should definitely tell your interviewer if you’ve previously heard the question This
seems silly to some people - if you already know the question (and answer), you could ace
the question, right? Not quite

Here’s why we strongly recommend that you tell your interviewer that you’ve heard the
question:

1 Big honesty points This shows a lot of integrity That’s huge Remember that the
interviewer is evaluating you as a potential teammate I don’t know about you, but I
personally prefer to work with honest people!

2 The question might have changed ever-so-slightly You don’t want to risk repeating the
wrong answer

3 If you easily belt out the right answer, it’s obvious to the interviewer They know how
hard a problem is supposed to be It’s very hard to “pretend” to struggle through a
question, because you just can’t approach it the same way other candidates do

How should I dress?

Generally, candidates should dress one small step above the average employee in their posi-
tion, or as nice as the nicest dressed employees in their position In most software firms, this
means that jeans (nice jeans with no holes) or slacks with a nice shirt or sweater is fine In a
bank or another more formal institution, avoid jeans and stick with slacks

What language should I use?

Many people will tell you “whatever language you’re most comfortable with,” but ideally you
want to use a language that your interviewer is comfortable with I’d usually recommend
coding in either C, C++ or Java, as the vast majority of interviewers will be comfortable in
one of these languages My personal preference for interviews is Java (unless it’s a question
requiring C / C++), because it’s quick to write and almost everyone can read and understand
Java, even if they code mostly in C++ (Almost all the solutions in this book are written in
Java for this reason)

I didn’t hear back immediately after my interview Am I rejected?

4 2CareerCup com

At the Interview | Frequently Asked Questions

Absolutely not Responses can be held up for a variety of reasons that have nothing to do
with a good or bad performance For example, an interviewer could have gone on vacation
right after your interview A company will always tell you if you’re rejected (or at least I’ve
never heard of a company which didn’t)

Can I re-apply to a company after getting rejected?

Almost always, but you typically have to wait a bit (6 months – 1 year) Your first bad inter-
view usually won’t affect you too much when you re-interview Lots of people got rejected
from Google or Microsoft and later got an offer

How are interview questions selected?

This depends on the company, but any number of ways:

1 Pre-Assigned List of Questions: This is unusual at bigger companies

2 Assigned Topics: Each interviewer is assigned a specific area to probe, but decides on
his/her own questions

3 Interviewer’s Choice: Each interviewer asks whatever he / she wants Usually, under
this system, the interviewers have a way of tracking which questions were asked to a
candidate to ensure a good diversity of questions

Approach #3 is the most common This system usually means that interviewers will each
have a “stock” set of five or so questions that they ask candidates

What about experienced candidates?

This depends a lot on the company On average though, experienced candidates will slightly
get more questions about their background, and they might face higher standards when dis-
cussing system architecture (if this is relevant to their experience) For the most part though,
experienced candidates face much the same process

Yes, for better or worse, experienced candidate should expect to go through the same coding
and algorithm questions With respect to their performance, they could face either higher
standards (because they have more experience) or lower standards (because it’s likely been
many years since they worked with certain data structures)

Cracking the Coding Interview4 3

Interview Questions

How This Book is Organized

We have grouped interview questions into categories, with a page preceding each category
offering advice and other information Note that many questions may fall into multiple cat-
egories

Within each category, the questions are sorted by approximate level of difficulty Solutions
for all questions are at the back

Special Advice for Software Design Engineers in Test (SDETs)

Not only must SDETs master testing, but they also have to be great coders Thus, we recom-
mend the follow preparation process:

 » Prepare the Core Testing Problems: For example, how would you test a light bulb? A
pen? A cash register? Microsoft Word? The Testing Chapter will give you more back-
ground on these problems

 » Practice the Coding Questions: The #1 thing that SDETs get rejected for is coding skills
Make sure that you prepare for all the same coding and algorithm questions that a regu-
lar developer would get

 » Practice Testing the Coding Questions: A very popular format for SDET question
is “Write code to do X,” followed up by “OK, now test it ” So, even when the question
doesn’t specifically ask for this, you should ask yourself, “how would you test this?” Re-
member: any problem can be an SDET problem!

Full, Compilable Solutions

For your convenience, you can download the full solutions to the problems at http://www
careercup com/careercup_book_solutions This file provides executable code for all the Java
solutions The solutions can be opened and run with Eclipse

Suggestions and Corrections

While we do our best to ensure that all the solutions are correct, mistakes will be made More-
over, sometimes there is no “right” answer If you'd like to offer a suggestion or correction,
please submit it at http://xrl us/ccbook

http://www.careercup.com/careercup_book_solutions
http://www.careercup.com/careercup_book_solutions

Interview Questions

Part 1
Data Structures

Chapter 1 | Arrays and Strings

Cracking the Coding Interview | Data Structures4 7

Chapter 1 | Arrays and Strings

Hash Tables

While not all problems can be solved with hash tables, a shocking number of interview prob-
lems can be Before your interview, make sure to practice both using and implementing
hash tables
1 public HashMap<Integer, Student> buildMap(Student[] students) {
2 HashMap<Integer, Student> map = new HashMap<Integer, Student>();
3 for (Student s : students) map.put(s.getId(), s);
4 return map;
5 }

ArrayList (Dynamically Resizing Array):

An ArrayList, or a dynamically resizing array, is an array that resizes itself as needed while
still providing O(1) access A typical implementation is that when a vector is full, the array
doubles in size Each doubling takes O(n) time, but happens so rarely that its amortized time
is still O(1)
1 public ArrayList<String> merge(String[] words, String[] more) {
2 ArrayList<String> sentence = new ArrayList<String>();
3 for (String w : words) sentence.add(w);
4 for (String w : more) sentence.add(w);
5 return sentence;
6 }

StringBuffer / StringBuilder

Question: What is the running time of this code?
1 public String makeSentence(String[] words) {
2 StringBuffer sentence = new StringBuffer();
3 for (String w : words) sentence.append(w);
4 return sentence.toString();
5 }

Answer: O(n^2), where n is the number of letters in sentence Here’s why: each time you
append a string to sentence, you create a copy of sentence and run through all the letters in
sentence to copy them over If you have to iterate through up to n characters each time in the
loop, and you’re looping at least n times, that gives you an O(n^2) run time Ouch!

With StringBuffer (or StringBuilder) can help you avoid this problem
1 public String makeSentence(String[] words) {
2 StringBuffer sentence = new StringBuffer();
3 for (String w : words) sentence.append(w);
4 return sentence.toString();
5 }

Chapter 1 | Arrays and Strings

4 8CareerCup com

1 1 Implement an algorithm to determine if a string has all unique characters What if you
can not use additional data structures?
 ___pg 95

1 2 Write code to reverse a C-Style String (C-String means that “abcd” is represented as
five characters, including the null character)
 ___pg 96

1 3 Design an algorithm and write code to remove the duplicate characters in a string
without using any additional buffer NOTE: One or two additional variables are fine
An extra copy of the array is not

FOLLOW UP

Write the test cases for this method
 ___pg 97

1 4 Write a method to decide if two strings are anagrams or not
 ___pg 99

1 5 Write a method to replace all spaces in a string with ‘%20’
 __pg 100

1 6 Given an image represented by an NxN matrix, where each pixel in the image is 4
bytes, write a method to rotate the image by 90 degrees Can you do this in place?
 __pg 101

1 7 Write an algorithm such that if an element in an MxN matrix is 0, its entire row and
column is set to 0
 __pg 102

1 8 Assume you have a method isSubstring which checks if one word is a substring of
another Given two strings, s1 and s2, write code to check if s2 is a rotation of s1 using
only one call to isSubstring (i e , “waterbottle” is a rotation of “erbottlewat”)
 __pg 103

Chapter 2 | Linked Lists

Cracking the Coding Interview | Data Structures4 9

Chapter 2 | Linked Lists

How to Approach:

Linked list questions are extremely common These can range from simple (delete a node in
a linked list) to much more challenging Either way, we advise you to be extremely comfort-
able with the easiest questions Being able to easily manipulate a linked list in the simplest
ways will make the tougher linked list questions much less tricky With that said, we present
some “must know” code about linked list manipulation You should be able to easily write
this code yourself prior to your interview

Creating a Linked List:

NOTE: When you’re discussing a linked list in an interview, make sure to under-
stand whether it is a single linked list or a doubly linked list.

1 class Node {
2 Node next = null;
3 int data;
4 public Node(int d) { data = d; }
5 void appendToTail(int d) {
6 Node end = new Node(d);
7 Node n = this;
8 while (n.next != null) { n = n.next; }
9 n.next = end;
10 }
11 }

Deleting a Node from a Singly Linked List
1 Node deleteNode(Node head, int d) {
2 Node n = head;
3 if (n.data == d) {
4 return head.next; /* moved head */
5 }
6 while (n.next != null) {
7 if (n.next.data == d) {
8 n.next = n.next.next;
9 return head; /* head didn’t change */
10 }
11 n = n.next;
12 }
13 }

Chapter 2 | Linked Lists

5 0CareerCup com

2 1 Write code to remove duplicates from an unsorted linked list

FOLLOW UP

How would you solve this problem if a temporary buffer is not allowed?
 __pg 105

2 2 Implement an algorithm to find the nth to last element of a singly linked list
 __pg 106

2 3 Implement an algorithm to delete a node in the middle of a single linked list, given
only access to that node

EXAMPLE

Input: the node ‘c’ from the linked list a->b->c->d->e

Result: nothing is returned, but the new linked list looks like a->b->d->e
 __pg 107

2 4 You have two numbers represented by a linked list, where each node contains a sin-
gle digit The digits are stored in reverse order, such that the 1’s digit is at the head of
the list Write a function that adds the two numbers and returns the sum as a linked
list

EXAMPLE
Input: (3 -> 1 -> 5) + (5 -> 9 -> 2)

Output: 8 -> 0 -> 8
 __pg 108

2 5 Given a circular linked list, implement an algorithm which returns node at the begin-
ning of the loop

DEFINITION
Circular linked list: A (corrupt) linked list in which a node’s next pointer points to an
earlier node, so as to make a loop in the linked list

EXAMPLE

input: A -> B -> C -> D -> E -> C [the same C as earlier]

output: C
 __pg 109

Chapter 3 | Stacks and Queues

Cracking the Coding Interview | Data Structures5 1

Chapter 3 | Stacks and Queues

How to Approach:

Whether you are asked to implement a simple stack / queue, or you are asked to implement
a modified version of one, you will have a big leg up on other candidates if you can flawlessly
work with stacks and queues Practice makes perfect! Here is some skeleton code for a Stack
and Queue class

Implementing a Stack
1 class Stack {
2 Node top;
3 Node pop() {
4 if (top != null) {
5 Object item = top.data;
6 top = top.next;
7 return item;
8 }
9 return null;
10 }
11 void push(Object item) {
12 Node t = new Node(item);
13 t.next = top;
14 top = t;
15 }
16 }

Implementing a Queue
1 class Queue {
2 Node first, last;
3 void enqueue(Object item) {
4 if (!first) {
5 back = new Node(item);
6 first = back;
7 } else {
8 back.next = new Node(item);
9 back = back.next;
10 }
11 }
12 Node dequeue(Node n) {
13 if (front != null) {
14 Object item = front.data;
15 front = front.next;
16 return item;
17 }
18 return null;
19 }
20 }

Chapter 3 | Stacks and Queues

5 2CareerCup com

3 1 Describe how you could use a single array to implement three stacks
 __pg 111

3 2 How would you design a stack which, in addition to push and pop, also has a function
min which returns the minimum element? Push, pop and min should all operate in
O(1) time
 __pg 113

3 3 Imagine a (literal) stack of plates If the stack gets too high, it might topple There-
fore, in real life, we would likely start a new stack when the previous stack exceeds
some threshold Implement a data structure SetOfStacks that mimics this SetOf-
Stacks should be composed of several stacks, and should create a new stack once
the previous one exceeds capacity SetOfStacks push() and SetOfStacks pop() should
behave identically to a single stack (that is, pop() should return the same values as it
would if there were just a single stack)

FOLLOW UP

Implement a function popAt(int index) which performs a pop operation on a specific
sub-stack
 __pg 115

3 4 In the classic problem of the Towers of Hanoi, you have 3 rods and N disks of different
sizes which can slide onto any tower The puzzle starts with disks sorted in ascending
order of size from top to bottom (e g , each disk sits on top of an even larger one) You
have the following constraints:

(A) Only one disk can be moved at a time

(B) A disk is slid off the top of one rod onto the next rod

(C) A disk can only be placed on top of a larger disk

Write a program to move the disks from the first rod to the last using Stacks
 __pg 118

3 5 Implement a MyQueue class which implements a queue using two stacks
 __pg 120

3 6 Write a program to sort a stack in ascending order You should not make any assump-
tions about how the stack is implemented The following are the only functions that
should be used to write this program: push | pop | peek | isEmpty
 __pg 121

Chapter 4 | Trees and Graphs

Cracking the Coding Interview | Data Structures5 3

Chapter 4 | Trees and Graphs

How to Approach:

Trees and graphs questions typically come in one of two forms:

1 Implement a tree / find a node / delete a node / other well known algorithm

2 Implement a modification of a known algorithm

Either way, it is strongly recommended to understand the important tree algorithms prior to
your interview If you’re fluent in these, it’ll make the tougher questions that much easier!
We’ll list some of the most important

WARNING: Not all binary trees are binary search trees

When given a binary tree question, many candidates assume that the interviewer means
“binary search tree”, when the interviewer might only mean “binary tree ” So, listen carefully
for that word “search ” If you don’t hear it, the interviewer may just mean a binary tree with
no particular ordering on the nodes If you aren’t sure, ask

Binary Trees—”Must Know” Algorithms

You should be able to easily implement the following algorithms prior to your interview:

 » In-Order: Traverse left node, current node, then right [usually used for binary search
trees]

 » Pre-Order: Traverse current node, then left node, then right node

 » Post-Order: Traverse left node, then right node, then current node

 » Insert Node: On a binary search tree, we insert a value v, by comparing it to the root If v
> root, we go right, and else we go left We do this until we hit an empty spot in the tree

Note: balancing and deletion of binary search trees are rarely asked, but you might
want to have some idea how they work It can set you apart from other candidates

Graph Traversal—”Must Know” Algorithms

You should be able to easily implement the following algorithms prior to your interview:

 » Depth First Search: DFS involves searching a node and all its children before proceed-
ing to its siblings

 » Breadth First Search: BFS involves searching a node and its siblings before going on
to any children

Chapter 4 | Trees and Graphs

5 4CareerCup com

4 1 Implement a function to check if a tree is balanced For the purposes of this question,
a balanced tree is defined to be a tree such that no two leaf nodes differ in distance
from the root by more than one
 __pg 123

4 2 Given a directed graph, design an algorithm to find out whether there is a route be-
tween two nodes
 __pg 124

4 3 Given a sorted (increasing order) array, write an algorithm to create a binary tree with
minimal height
 __pg 125

4 4 Given a binary search tree, design an algorithm which creates a linked list of all the
nodes at each depth (i e , if you have a tree with depth D, you’ll have D linked lists)
 __pg 126

4 5 Write an algorithm to find the ‘next’ node (i e , in-order successor) of a given node in
a binary search tree where each node has a link to its parent
 __pg 127

4 6 Design an algorithm and write code to find the first common ancestor of two nodes
in a binary tree Avoid storing additional nodes in a data structure NOTE: This is not
necessarily a binary search tree
 __pg 128

4 7 You have two very large binary trees: T1, with millions of nodes, and T2, with hun-
dreds of nodes Create an algorithm to decide if T2 is a subtree of T1
 __pg 130

4 8 You are given a binary tree in which each node contains a value Design an algorithm
to print all paths which sum up to that value Note that it can be any path in the tree
- it does not have to start at the root
 __pg 131

Part 2
Concepts and Algorithms

Cracking the Coding Interview | Concepts and Algorithms5 7

Chapter 5 | Bit Manipulation

How to Approach:

Bit manipulation can be a scary thing to many candidates, but it doesn’t need to be! If you’re
shaky on bit manipulation, we recommend doing a couple of arithmetic-like problems to
boost your skills Compute the following by hand:

1010 - 0001 1010 + 0110 1100^1010
1010 << 1 1001^1001 1001 & 1100
1010 >> 1 0xFF - 1 0xAB + 0x11

If you’re still uncomfortable, examine very carefully what happens when you do subtraction,
addition, etc in base 10 Can you repeat that work in base 2?

NOTE: The Windows Calculator knows how to do lots of operations in binary,
including ADD, SUBTRACT, AND and OR. Go to View > Programmer to get into
binary mode while you practice.

Things to Watch Out For:

 » It’s really easy to make mistakes on these problems, so be careful! When you’re writing
code, stop and think about what you’re writing every couple of lines - or, better yet, test
your code mid-way through! When you’re done, check through your entire code

 » If you’re bit shifting, what happens when the digits get shifted off the end? Make sure
to think about this case to ensure that you’re handling it correctly

And (&): 0 & 0 = 0 1 & 0 = 0 0 & 1 = 0 1 & 1 = 1
Or (|): 0 | 0 = 0 1 | 0 = 1 0 | 1 = 1 1 | 1 = 1
Xor (^): 0 ^ 0 = 0 1 ^ 0 = 1 0 ^ 1 = 1 1 ^ 1 = 0

Left Shift:

x << y means x shifted y bits to the left If you start shifting and you run out of space, the bits
just “drop off” For example:

00011001 << 2 = 01100100
00011001 << 4 = 10010000

Right Shift:

x >> y means x shifted y bits to the right If you start shifting and you run out of space, the bits
just “drop off” the end Example:

00011001 >> 2 = 00000110
00011001 >> 4 = 00000001

Chapter 5 | Bit Manipulation

5 8CareerCup com

5 1 You are given two 32-bit numbers, N and M, and two bit positions, i and j Write a
method to set all bits between i and j in N equal to M (e g , M becomes a substring of
N located at i and starting at j)

EXAMPLE:

Input: N = 10000000000, M = 10101, i = 2, j = 6

Output: N = 10001010100
 __pg 133

5 2 Given a (decimal - e g 3 72) number that is passed in as a string, print the binary rep-
resentation If the number can not be represented accurately in binary, print “ERROR”
 __pg 134

5 3 Given an integer, print the next smallest and next largest number that have the same
number of 1 bits in their binary representation
 __pg 135

5 4 Explain what the following code does: ((n & (n-1)) == 0)
 __pg 138

5 5 Write a function to determine the number of bits required to convert integer A to
integer B

Input: 31, 14

Output: 2
 __pg 139

5 6 Write a program to swap odd and even bits in an integer with as few instructions as
possible (e g , bit 0 and bit 1 are swapped, bit 2 and bit 3 are swapped, etc)
 __pg 140

5 7 An array A[1 n] contains all the integers from 0 to n except for one number which is
missing In this problem, we cannot access an entire integer in A with a single opera-
tion The elements of A are represented in binary, and the only operation we can use
to access them is “fetch the jth bit of A[i]”, which takes constant time Write code to
find the missing integer Can you do it in O(n) time?
 __pg 141

Chapter 6 | Brain Teasers

Cracking the Coding Interview | Concepts and Algorithms5 9

Chapter 6 | Brain Teasers

Do companies really ask brain teasers?

While many companies, including Google and Microsoft, have policies banning brain teas-
ers, interviewers still sometimes ask these tricky questions This is especially true since peo-
ple have different definitions of brain teasers

Advice on Approaching Brain Teasers

Don’t panic when you get a brain teaser Interviewers want to see how you tackle a problem;
they don’t expect you to immediately know the answer Start talking, and show the inter-
viewer how you approach a problem

In many cases, you will also find that the brain teasers have some connection back to funda-
mental laws or theories of computer science

If you’re stuck, we recommend simplifying the problem Solve it for a small number of items
or a special case, and then see if you can generalize it

Example

You are trying to cook an egg for exactly fifteen minutes, but instead of a timer, you are given
two ropes which burn for exactly 1 hour each The ropes, however, are of uneven densities -
i e , half the rope length-wise might take only two minutes to burn

The Approach

1 What is important? Numbers usually have a meaning behind them The fifteen minutes
and two ropes were picked for a reason

2 Simplify! You can easily time one hour (burn just one rope)

3 Now, can you time 30 minutes? That’s half the time it takes to burn one rope Can you
burn the rope twice as fast? Yes! (Light the rope at both ends)

4 You’ve now learned: (1) You can time 30 minutes (2) You can burn a rope that takes X
minutes in just X/2 minutes by lighting both ends

5 Work backwards: if you had a rope of burn-length 30 minutes, that would let you time
15 minutes Can you remove 30 minutes of burn-time from a rope?

6 You can remove 30 minutes of burn-time from Rope #2 by lighting Rope #1 at both
ends and Rope #2 at one end

7 Now that you have Rope #2 at burn-length 30 minutes, start cooking the egg and light
Rope #2 at the other end When Rope #2 burns up, your egg is done!

Chapter 6 | Brain Teasers

6 0CareerCup com

6 1 Add arithmetic operators (plus, minus, times, divide) to make the following expres-
sion true: 3 1 3 6 = 8 You can use any parentheses you’d like
 __pg 143

6 2 There is an 8x8 chess board in which two diagonally opposite corners have been cut
off You are given 31 dominos, and a single domino can cover exactly two squares
Can you use the 31 dominos to cover the entire board? Prove your answer (by provid-
ing an example, or showing why it’s impossible)
 __pg 144

6 3 You have a five quart jug and a three quart jug, and an unlimited supply of water
(but no measuring cups) How would you come up with exactly four quarts of water?

NOTE: The jugs are oddly shaped, such that filling up exactly ‘half’ of the jug would
be impossible
 __pg 145

6 4 A bunch of men are on an island A genie comes down and gathers everyone to-
gether and places a magical hat on some people’s heads (i e , at least one person has
a hat) The hat is magical: it can be seen by other people, but not by the wearer of
the hat himself To remove the hat, those (and only those who have a hat) must dunk
themselves underwater at exactly midnight If there are n people and c hats, how
long does it take the men to remove the hats? The men cannot tell each other (in any
way) that they have a hat

FOLLOW UP

Prove that your solution is correct
 __pg 146

6 5 There is a building of 100 floors If an egg drops from the Nth floor or above it will
break If it’s dropped from any floor below, it will not break You’re given 2 eggs Find
N, while minimizing the number of drops for the worst case
 __pg 148

6 6 There are one hundred closed lockers in a hallway A man begins by opening all one
hundred lockers Next, he closes every second locker Then he goes to every third
locker and closes it if it is open or opens it if it is closed (e g , he toggles every third
locker) After his one hundredth pass in the hallway, in which he toggles only locker
number one hundred, how many lockers are open?
 __pg 149

Chapter 7 | Object Oriented Design

Cracking the Coding Interview | Concepts and Algorithms6 1

Chapter 7 | Object Oriented Design

How to Approach

Object oriented design questions are very important, as they demonstrate the quality of a
candidate’s code A poor performance on this type of question raises serious red flags

Handling Ambiguity in an Interview

OOD questions are often intentionally vague to test if you’ll make assumptions, or if you’ll ask
clarifying questions How do you design a class if the constraints are vague? Ask questions
to eliminate ambiguity, then design the classes to handle any remaining ambiguity

Object Oriented Design for Software

Imagine we’re designing the objects for a deck of cards Consider the following approach:

1 What are you trying to do with the deck of cards? Ask your interviewer Let’s assume
we want a general purpose deck of cards to implement many different types of card
games

2 What are the core objects—and what “sub types” are there? For example, the core
items might be: Card, Deck, Number, Suit, PointValue

3 Have you missed anything? Think about how you’ll use that deck of cards to imple-
ment different types of games, changing the class design as necessary

4 Now, get a little deeper: how will the methods work? If you have a method like Card
Deck: getCard(Suit s, Number n), think about how it will retrieve the card

Object Oriented Design for Real World Object

Real world objects are handled very similarly to software object oriented design Suppose
you are designing an object oriented design for a parking lot:

1 What are your goals? For example: figure out if a parking spot is taken, figure out how
many cars of each type are in the parking lot, look up handicapped spots, etc

2 Now, think about the core objects (Car, ParkingSpot, ParkingLot, ParkingMeter, etc—
Car has different subclasses, and ParkingSpot is also subclassed for handicapped spot)

3 Have we missed anything? How will we represent parking restrictions based on time
or payment? Perhaps, we’ll add a class called Permission which handles different pay-
ment systems Permission will be sub-classed into classes PaidPermission (fee to park)
and FreeParking (open parking) ParkingLot will have a method called GetPermission
which will return the current Permission object based on the time

4 How will we know whether or not a car is in a spot? Think about how to represent the
data so that the methods are most efficient

Chapter 7 | Object Oriented Design

6 2CareerCup com

7 1 Design the data structures for a generic deck of cards Explain how you would sub-
class it to implement particular card games
 __pg 151

7 2 Imagine you have a call center with three levels of employees: fresher, technical lead
(TL), product manager (PM) There can be multiple employees, but only one TL or PM
An incoming telephone call must be allocated to a fresher who is free If a fresher
can’t handle the call, he or she must escalate the call to technical lead If the TL is
not free or not able to handle it, then the call should be escalated to PM Design the
classes and data structures for this problem Implement a method getCallHandler()
 __pg 152

7 3 Design a musical juke box using object oriented principles
 __pg 154

7 4 Design a chess game using object oriented principles
 __pg 156

7 5 Design the data structures for an online book reader system
 __pg 157

7 6 Implement a jigsaw puzzle Design the data structures and explain an algorithm to
solve the puzzle
 __pg 159

7 7 Explain how you would design a chat server In particular, provide details about the
various backend components, classes, and methods What would be the hardest
problems to solve?
 __pg 161

7 8 Othello is played as follows: Each Othello piece is white on one side and black on the
other When a piece is surrounded by its opponents on both the left and right sides,
or both the top and bottom, it is said to be captured and its color is flipped On your
turn, you must capture at least one of your opponent’s pieces The game ends when
either user has no more valid moves, and the win is assigned to the person with the
most pieces Implement the object oriented design for Othello
 __pg 163

7 9 Explain the data structures and algorithms that you would use to design an in-mem-
ory file system Illustrate with an example in code where possible
 __pg 166

7 10 Describe the data structures and algorithms that you would use to implement a gar-
bage collector in C++

 __pg 167

Chapter 8 | Recursion

Cracking the Coding Interview | Concepts and Algorithms6 3

Chapter 8 | Recursion

How to Recognize

While there is a wide variety of recursive problems, many recursive problems follow similar
patterns A good hint that problem is recursive is that it appears to be built off sub-problems

When you hear a problem beginning with the following, it’s often (though not always) a
good candidate for recursion: “Design an algorithm to compute the nth ”; “Write code to list
the first n ”; “Implement a method to compute all ”; etc

Again, practice makes perfect! The more problems you do, the easier it will be to recognize
recursive problems

How to Approach

Recursive solutions, by definition, are built off solutions to sub-problems Many times, this
will mean simply to compute f(n) by adding something, removing something, or otherwise
changing the solution for f(n-1) In other cases, you might have to do something more com-
plicated Regardless, we recommend the following approach:

1 Think about what the sub-problem is How many sub-problems does f(n) depend on?
That is, in a recursive binary tree problem, each part will likely depend on two prob-
lems In a linked list problem, it’ll probably be just one

2 Solve for a “base case ” That is, if you need to compute f(n), first compute it for f(0) or
f(1) This is usually just a hard-coded value

3 Solve for f(2)

4 Understand how to solve for f(3) using f(2) (or previous solutions) That is, understand
the exact process of translating the solutions for sub-problems into the real solution

5 Generalize for f(n)

This “bottom-up recursion” is often the most straight-forward Sometimes, though, it can be
useful to approach problems “top down”, where you essentially jump directly into breaking
f(n) into its sub-problems

Things to Watch Out For

1 All problems that can be solved recursively can also be solved iteratively (though
the code may be much more complicated) Before diving into a recursive code, ask
yourself how hard it would be to implement this algorithm iteratively Discuss the
trade-offs with your interviewer

2 Recursive algorithms can be very space inefficient Each recursive call adds a new layer
to the stack, which means that if your algorithm has O(n) recursive calls then it uses
O(n) memory Ouch! This is one reason why an iterative algorithm may be better

Chapter 8 | Recursion

6 4CareerCup com

8 1 Write a method to generate the nth Fibonacci number
 __pg 169

8 2 Imagine a robot sitting on the upper left hand corner of an NxN grid The robot can
only move in two directions: right and down How many possible paths are there for
the robot?

FOLLOW UP

Imagine certain squares are “off limits”, such that the robot can not step on them
Design an algorithm to get all possible paths for the robot
 __pg 170

8 3 Write a method that returns all subsets of a set
 __pg 171

8 4 Write a method to compute all permutations of a string
 __pg 173

8 5 Implement an algorithm to print all valid (e g , properly opened and closed) combi-
nations of n-pairs of parentheses

EXAMPLE:

input: 3 (e g , 3 pairs of parentheses)

output: ()()(), ()(()), (())(), ((()))
 __pg 174

8 6 Implement the “paint fill” function that one might see on many image editing pro-
grams That is, given a screen (represented by a 2 dimensional array of Colors), a
point, and a new color, fill in the surrounding area until you hit a border of that col-
or ’
 __pg 175

8 7 Given an infinite number of quarters (25 cents), dimes (10 cents), nickels (5 cents) and
pennies (1 cent), write code to calculate the number of ways of representing n cents
 __pg 176

8 8 Write an algorithm to print all ways of arranging eight queens on a chess board so
that none of them share the same row, column or diagonal
 __pg 177

Chapter 9 | Sorting and Searching

Cracking the Coding Interview | Concepts and Algorithms6 5

Chapter 9 | Sorting and Searching

How to Approach:

Understanding the common sorting algorithms is incredibly valuable, as many sorting or
searching solutions require tweaks of known sorting algorithms A good approach when
you are given a question like this is to run through the different sorting algorithms and see if
one applies particularly well

Example: You have a very large array of ‘Person’ objects Sort the people in increasing order
of age

We’re given two interesting bits of knowledge here: (1) It’s a large array, so efficiency is very
important (2) We are sorting based on ages, so we know the values are in a small range By
scanning through the various sorting algorithms, we might notice that bucket sort would
be a perfect candidate for this algorithm In fact, we can make the buckets small (just 1 year
each) and get O(n) running time

Bubble Sort:

Start at the beginning of an array and swap the first two elements if the first is bigger than
the second Go to the next pair, etc, continuously making sweeps of the array until sorted
O(n^2)

Selection Sort:

Find the smallest element using a linear scan and move it to the front Then, find the second
smallest and move it, again doing a linear scan Continue doing this until all the elements
are in place O(n^2)

Merge Sort:

Sort each pair of elements Then, sort every four elements by merging every two pairs Then,
sort every 8 elements, etc O(n log n) expected and worst case

Quick Sort:

Pick a random element and partition the array, such that all numbers that are less than it
come before all elements that are greater than it Then do that for each half, then each quar-
ter, etc O(n log n) expected, O(n^2) worst case

Bucket Sort:

Partition the array into a finite number of buckets, and then sort each bucket individually
This gives a time of O(n + m), where n is the number of items and m is the number of distinct
items

Chapter 9 | Sorting and Searching

6 6CareerCup com

9 1 You are given two sorted arrays, A and B, and A has a large enough buffer at the end
to hold B Write a method to merge B into A in sorted order
 __pg 179

9 2 Write a method to sort an array of strings so that all the anagrams are next to each
other
 __pg 180

9 3 Given a sorted array of n integers that has been rotated an unknown number of
times, give an O(log n) algorithm that finds an element in the array You may assume
that the array was originally sorted in increasing order

EXAMPLE:

Input: find 5 in array (15 16 19 20 25 1 3 4 5 7 10 14)

Output: 8 (the index of 5 in the array)
 __pg 181

9 4 If you have a 2 GB file with one string per line, which sorting algorithm would you use
to sort the file and why?
 __pg 182

9 5 Given a sorted array of strings which is interspersed with empty strings, write a meth-
od to find the location of a given string

Example: find “ball” in [“at”, “”, “”, “”, “ball”, “”, “”, “car”, “”, “”, “dad”, “”, “”] will return 4
Example: find “ballcar” in [“at”, “”, “”, “”, “”, “ball”, “car”, “”, “”, “dad”, “”, “”] will return -1
 __pg 183

9 6 Given a matrix in which each row and each column is sorted, write a method to find
an element in it
 __pg 184

9 7 A circus is designing a tower routine consisting of people standing atop one anoth-
er’s shoulders For practical and aesthetic reasons, each person must be both shorter
and lighter than the person below him or her Given the heights and weights of each
person in the circus, write a method to compute the largest possible number of peo-
ple in such a tower

EXAMPLE:

Input (ht, wt): (65, 100) (70, 150) (56, 90) (75, 190) (60, 95) (68, 110)

Output: The longest tower is length 6 and includes from top to bottom: (56, 90)
(60,95) (65,100) (68,110) (70,150) (75,190)
 __pg 185

Chapter 10 | Mathematical

Cracking the Coding Interview | Concepts and Algorithms6 7

Chapter 10 | Mathematical

How to Approach:

Many of these problems read as brain teasers at first, but can be worked through in a logical
way Just remember to rely on the rules of mathematics to develop an approach, and then to
carefully translate that idea into code

Example: Given two numbers m and n, write a method to return the first number r that is
divisible by both (e g , the least common multiple)

The Approach: What does it mean for r to be divisible by m and n? It means that all the primes
in m must go into r, and all primes in n must be in r What if m and n have primes in common?
For example, if m is divisible by 3^5 and n is divisible by 3^7, what does this mean about r?
It means r must be divisible by 3^7

The Rule: For each prime p such that p^a \ m (e g , m is divisible by p^a) and p^b \ n, r
must be divisible by p^max(a, b)

The Algorithm:
Define q to be 1.
for each prime number p less than m and n:
 find the largest a and b such that p^a \ m and p^b \ n
 let q = q * p^max(a, b)
return q

NOTE: An alternate solution involves recognizing that gcd(a, b) * lcm(a, b) = ab.
One could then compute the gcd(a, b) using the Euclidean algorithm. Of course,
unless you already know this fact, it’s unlikely that this rule would occur to you
during an interview.

Things to Watch Out For:

1 Be careful with the difference in precision between floats vs doubles

2 Don’t assume that a value (such as the slope of a line) is an int unless you’ve been told
so

Bayes’ Rule and Probability

1 If A and B are independent, then P(A and B) = P(A) * P(B)

2 Else (in general), P(A and B) = P(A given B) * P(B)

3 If A and B are mutually exclusive (e g , if one happens, the other one can’t),
P(A or B) = P(A) + P(B)

4 Else (in general), P(A or B) = P(A) + P(B) - P(A and B)

Chapter 10 | Mathematical

6 8CareerCup com

10 1 You have a basketball hoop and someone says that you can play 1 of 2 games

Game #1: You get one shot to make the hoop

Game #2: You get three shots and you have to make 2 of 3 shots

If p is the probability of making a particular shot, for which values of p should you pick
one game or the other?
 __pg 187

10 2 There are three ants on different vertices of a triangle What is the probability of colli-
sion (between any two or all of them) if they start walking on the sides of the triangle?

Similarly find the probability of collision with ‘n’ ants on an ‘n’ vertex polygon
 __pg 188

10 3 Given two lines on a Cartesian plane, determine whether the two lines would inter-
sect
 __pg 189

10 4 Write a method to implement *, - , / operations You should use only the + operator
 __pg 190

10 5 Given two squares on a two dimensional plane, find a line that would cut these two
squares in half
 __pg 192

10 6 Given a two dimensional graph with points on it, find a line which passes the most
number of points
 __pg 193

10 7 Design an algorithm to find the kth number such that the only prime factors are 3,
5, and 7
 __pg 195

Chapter 11 | Testing

Cracking the Coding Interview | Concepts and Algorithms6 9

Chapter 11 | Testing

Testing Problems: Not Just for Testers!

Although testers are obviously asked more testing problems, developers will often be asked
testing problems as well Why? Because a good developer knows how to test their code!

Types of Testing Problems:

Testing problems generally fall into one of three categories:

1 Explain how you would test this real world object (pen, paperclip, etc)

2 Explain how you would test this computer software (e g , a web browser)

3 Write test cases / test code to test this specific method

We’ll discuss type #1, since it’s usually the most daunting Remember that all three types
require you to not make assumptions that the input or the user will play nice Expect abuse
and plan for it

How to Test A Real World Object

Let’s imagine that you were asked to test a paperclip The first thing to understand is: what is
it expected to be used for and who are the expected users Ask your interviewer—the answer
may not be what you think! The answer could be “by teachers, to hold papers together” or it
could be “by artists, to bend into new shapes ” These two use-cases will have very different
answers Once you understand the intended use, think about:

 » What are the specific use cases for the intended purpose? For example, holding 2 sheets
of paper together, and up to 30 sheets If it fails, does it fail gracefully? (see below)

 » What does it mean for it to fail? Answer: “Failing gracefully“ means for the paperclip to
not hold paper together If it snaps easily, that’s (probably) not failing gracefully

 » Ask your interviewer—what are the expectations of it being used outside of the intend-
ed use case? Should we ensure that it has a minimum of usefulness for the other cases?

 » What “stress” conditions might your paperclip be used in? Answer: hot weather, cold
weather, frequent re-use, etc

Chapter 11 | Testing

7 0CareerCup com

11 1 Find the mistake(s) in the following code:
1 unsigned int i;
2 for (i = 100; i <= 0; --i)
3 printf(“%d\n”, i);

 __pg 209

11 2 You are given the source to an application which crashes when it is run After running
it ten times in a debugger, you find it never crashes in the same place The application
is single threaded, and uses only the C standard library What programming errors
could be causing this crash? How would you test each one?
 __pg 210

11 3 We have the following method used in a chess game: boolean canMoveTo(int x, int y)
x and y are the coordinates of the chess board and it returns whether or not the piece
can move to that position Explain how you would test this method
 __pg 211

11 4 How would you load test a webpage without using any test tools?
 __pg 212

11 5 How would you test a pen?
 __pg 213

11 6 How would you test an ATM in a distributed banking system?
 __pg 214

Chapter 12 | System Design and Memory Limits

Cracking the Coding Interview | Concepts and Algorithms7 1

Chapter 12 | System Design and Memory Limits

How to Approach:

Don’t be scared by these types of questions Unless you claim to know how to design large
systems, your interviewer probably won’t expect you to know this stuff automatically They
just want to see how you tackle these problems

General Approach

The general approach is as follows: Imagine we’re designing a hypothetical system X for mil-
lions of items (users, files, megabytes, etc):

1 How would you solve it for a small number of items? Develop an algorithm for this
case, which is often pretty straight-forward

2 What happens when you try to implement that algorithm with millions of items? It’s
likely that you have run out of space on the computer So, divide up the files across
many computers

 » How do you divide up data across many machines? That is, do the first 100 items
appear on the same computer? Or all items with the same hash value mod 100?

 » About how many computers will you need? To estimate this, ask how big each
item is and take a guess at how much space a typical computer has

3 Now, fix the problems that occur when you are using many computers Make sure to
answer the following questions:

 » How does one machine know which machine it should access to look up data?

 » Can data get out of sync across computers? How do you handle that?

 » How can you minimize expensive reads across computers?

Example: Design a Web Crawler

1 Forget about the fact that you’re dealing with billions of pages How would you design
this system if it were just a small number of pages? You should have an understanding
of how you would solve the simple, small case in order to understand how you would
solve the bigger case

2 Now, think about the issues that occur with billions of pages Most likely you can’t fit
the data on one machine How will you divide it up? How will you figure out which
computer has a particular piece of data?

3 You now have different pieces of data on different machines What problems might
that create? Can you try to solve them?

And remember, don’t get scared! This is just an ordinary problem solving question.

Chapter 12 | System Design and Memory Limits

7 2CareerCup com

12 1 If you were integrating a feed of end of day stock price information (open, high, low,
and closing price) for 5,000 companies, how would you do it? You are responsible for
the development, rollout and ongoing monitoring and maintenance of the feed De-
scribe the different methods you considered and why you would recommend your
approach The feed is delivered once per trading day in a comma-separated format
via an FTP site The feed will be used by 1000 daily users in a web application
 __pg 197

12 2 How would you design the data structures for a very large social network (Facebook,
LinkedIn, etc)? Describe how you would design an algorithm to show the connec-
tion, or path, between two people (e g , Me -> Bob -> Susan -> Jason -> You)
 __pg 199

12 3 Given an input file with four billion integers, provide an algorithm to generate an
integer which is not contained in the file Assume you have 1 GB of memory

FOLLOW UP
What if you have only 10 MB of memory?
 __pg 202

12 4 You have an array with all the numbers from 1 to N, where N is at most 32,000 The
array may have duplicate entries and you do not know what N is With only 4KB of
memory available, how would you print all duplicate elements in the array?
 __pg 205

12 5 If you were designing a web crawler, how would you avoid getting into infinite loops?
 __pg 206

12 6 You have a billion urls, where each is a huge page How do you detect the duplicate
documents?
 __pg 207

12 7 You have to design a database that can store terabytes of data It should support ef-
ficient range queries How would you do it?
 __pg 208

Part 3
Knowledge Based

Chapter 13 | C++

Cracking the Coding Interview | Knowledge Based7 5

Chapter 13 | C++

How To Approach:

A good interviewer won’t demand that you code in a language you don’t profess to know
Hopefully, if you’re asked to code in C++, it’s listed on your resume If you don’t remember
all the APIs, don’t worry—your interviewer probably doesn’t care that much We do recom-
mend, however, studying up on basic C++ syntax

Pointer Syntax
1 int *p; // Defines pointer.
2 p = &q; // Sets p to address of q.
3 v = *p; // Set v to value of q.
4 Foo *f = new Foo(); // Initializes f.
5 int k = f->x; // Sets k equal to the value of f’s member variable.

C++ Class Syntax
1 class MyClass {
2 private:
3 double var;
4 public:
5 MyClass(double v) {var = v; }
6 ~MyClass() {};
7 double Update(double v);
8 };
9 double Complex::Update(double v) {
10 var = v; return v;
11 }

C++ vs Java

A very common question in an interview is “describe the differences between C++ and Java ”
If you aren’t comfortable with any of these concepts, we recommend reading up on them

1 Java runs in a virtual machine

2 C++ natively supports unsigned arithmetic

3 In Java, parameters are always passed by value (or, with objects, their references are
passed by value) In C++, parameters can be passed by value, pointer, or by reference

4 Java has built-in garbage collection

5 C++ allows operator overloading

6 C++ allows multiple inheritance of classes

Question: Which of these might be considered strengths or weaknesses of C++ or Java?
Why? In what cases might you choose one language over the other?

Chapter 13 | C++

7 6CareerCup com

13 1 Write a method to print the last K lines of an input file using C++
 __pg 215

13 2 Compare and contrast a hash table vs an STL map How is a hash table implemented?
If the number of inputs is small, what data structure options can be used instead of
a hash table?
 __pg 216

13 3 How do virtual functions work in C++?
 __pg 217

13 4 What is the difference between deep copy and shallow copy? Explain how you
would use each
 __pg 218

13 5 What is the significance of the keyword “volatile” in C?
 __pg 219

13 6 What is name hiding in C++?
 __pg 220

13 7 Why does a destructor in base class need to be declared virtual?
 __pg 221

13 8 Write a method that takes a pointer to a Node structure as a parameter and returns
a complete copy of the passed-in data structure The Node structure contains two
pointers to other Node structures
 __pg 223

13 9 Write a smart pointer (smart_ptr) class
 __pg 224

Chapter 14 | Java

Cracking the Coding Interview | Knowledge Based7 7

Chapter 14 | Java

How to Approach:

While Java related questions are found throughout this book, this chapter deals with ques-
tions about the language and syntax You generally will not find too many questions like this
at the larger software companies (though they are sometimes asked), but these questions
are very common at other companies

What do you do when you don’t know the answer?

If you don’t know the answer to a question about the Java language, try to figure it out by
doing the following: (1) Think about what other languages do (2) Create an example of the
scenario (3) Ask yourself how you would handle the scenario if you were designing the
language

Your interviewer may be equally—or more—impressed if you can derive the answer than if
you automatically knew it Don’t try to bluff though Tell the interviewer, “I’m not sure I can
recall the answer, but let me see if I can figure it out Suppose we have this code…”

Classes & Interfaces (Example)
1 public static void main(String args[]) { … }
2 interface Foo {
3 void abc();
4 }
5 class Foo extends Bar implements Foo { … }

final:

 » Class: Can not be sub-classed

 » Method: Can not be overridden

 » Variable: Can not be changed

static:

 » Method: Class method Called with Foo DoIt() instead of f DoIt()

 » Variable: Class variable Has only one copy and is accessed through the class name

abstract:

 » Class: Contains abstract methods Can not be instantiated

 » Interface: All interfaces are implicitly abstract This modifier is optional

 » Method: Method without a body Class must also be abstract

Chapter 14 | Java

7 8CareerCup com

14 1 In terms of inheritance, what is the effect of keeping a constructor private?
 __pg 225

14 2 In Java, does the finally block gets executed if we insert a return statement inside the
try block of a try-catch-finally?
 __pg 226

14 3 What is the difference between final, finally, and finalize?
 __pg 227

14 4 Explain the difference between templates in C++ and generics in Java
 __pg 228

14 5 Explain what object reflection is in Java and why it is useful
 __pg 229

14 6 Suppose you are using a map in your program, how would you count the number of
times the program calls the put() and get() functions?
 __pg 230

Chapter 15 | Databases

Cracking the Coding Interview | Knowledge Based7 9

Chapter 15 | Databases

How to Approach:

You could be asked about databases in a variety of ways: write a SQL query, design a data-
base to hold certain data, or design a large database We’ll go through the latter two types
here

Small Database Design

Imagine you are asked to design a system to represent a large, multi-location, apartment
rental company

What are the key objects?

Property Building Apartment Tenant Manager

How do they relate to each other?

Many-to-Many:

 » A property could have multiple managers, and a manager could manage multiple prop-
erties

One-to-Many:

 » A building can only be part of one property

 » An apartment can only be part of one building

What is the relationship between Tenant and Apartment? An apartment can ob-
viously have multiple tenants. Can a tenant rent multiple apartments? It would
be very unusual to, but this could actually happen (particularly if it’s a national
company). Talk to your interviewer about this. There is a trade-off between sim-
plifying your database and designing it to be flexible. If you do assume that a
Tenant can only rent one Apartment, what do you have to do if this situation
occurs?

Large Database Design

When designing a large, scalable database, joins (which are required in the above examples),
are generally very slow Thus, you must denormalize your data Think carefully about how
data will be used—you’ll probably need to duplicate it in multiple tables

Chapter 15 | Databases

8 0CareerCup com

15 1 Write a method to find the number of employees in each department
 __pg 231

15 2 What are the different types of joins? Please explain how they differ and why certain
types are better in certain situations
 __pg 232

15 3 What is denormalization? Explain the pros and cons
 __pg 234

15 4 Draw an entity-relationship diagram for a database with companies, people, and pro-
fessionals (people who work for companies)
 __pg 235

15 5 Imagine a simple database storing information for students’ grades Design what this
database might look like, and provide a SQL query to return a list of the honor roll
students (top 10%), sorted by their grade point average
 __pg 236

Chapter 16 | Low Level

Cracking the Coding Interview | Knowledge Based8 1

Chapter 16 | Low Level

How to Approach:

Many candidates find low level problems to be some of the most challenging Low level
questions require a large amount of knowledge about the underlying architecture of a sys-
tem But just how much do you need to know? The answer to that depends, of course, on
the company At a typical large software company where you’d be working on desktop or
web applications, you usually only need a minimum amount of knowledge However, you
should understand the concepts below very well, as many interview questions are based off
this information

Big vs Little Endian:

In big endian, the most significant byte is stored at the memory address location with the
lowest address This is akin to left-to-right reading order Little endian is the reverse: the
most significant byte is stored at the address with the highest address

Stack (Memory)

When a function calls another function which calls another function, this memory goes onto
the stack An int (not a pointer to an int) that is created in a function is stored on the stack

Heap (Memory)

When you allocate data with new() or malloc(), this data gets stored on the heap

Malloc

Memory allocated using malloc is persistent—i e , it will exist until either the programmer
frees the memory or the program is terminated
void *malloc(size_t sz)

Malloc takes as input sz bytes of memory and, if it is successful, returns a void pointer which
indicates that it is a pointer to an unknown data type
void free(void * p)

Free releases a block of memory previously allocated with malloc, calloc, or realloc

Chapter 16 | Low Level

8 2CareerCup com

16 1 Explain the following terms: virtual memory, page fault, thrashing
 __pg 237

16 2 What is a Branch Target buffer? Explain how it can be used in reducing bubble cycles
in cases of branch misprediction
 __pg 238

16 3 Describe direct memory access (DMA) Can a user level buffer / pointer be used by
kernel or drivers?
 __pg 239

16 4 Write a step by step execution of things that happen after a user presses a key on the
keyboard Use as much detail as possible
 __pg 237

16 5 Write a program to find whether a machine is big endian or little endian
 __pg 241

16 6 Discuss how would you make sure that a process doesn’t access an unauthorized part
of the stack
 __pg 242

16 7 What are the best practices to prevent reverse engineering of DLLs?
 __pg 244

16 8 A device boots with an empty FIFO queue In the first 400 ns period after startup,
and in each subsequent 400 ns period, a maximum of 80 words will be written to the
queue Each write takes 4 ns A worker thread requires 3 ns to read a word, and 2 ns
to process it before reading the next word What is the shortest depth of the FIFO
such that no data is lost?
 __pg 245

16 9 Write an aligned malloc & free function that takes number of bytes and aligned byte
(which is always power of 2)

EXAMPLE

align_malloc (1000,128) will return a memory address that is a multiple of 128 and
that points to memory of size 1000 bytes

aligned_free() will free memory allocated by align_malloc
 __pg 247

16 10 Write a function called my2DAlloc which allocates a two dimensional array Minimize
the number of calls to malloc and make sure that the memory is accessible by the
notation arr[i][j]
 __pg 248

Chapter 17 | Networking

Cracking the Coding Interview | Knowledge Based8 3

Chapter 17 | Networking

How to Approach

While the big software houses probably won’t ask you many detailed networking questions
in general, some interviewers will attempt to assess your understanding of networking as far
as it relates to software and system design Thus, you should have an understanding of http
post and get requests, tcp, etc

For a more networking based company (Qualcomm, CISCO, etc), we recommend a more
thorough understanding A good way to study is to read the material below, and delve fur-
ther into it on Wikipedia When Wikipedia discusses a concept that you are unfamiliar with,
click on the concept to read more

OSI 7 Layer Model

Networking architecture can be divided into seven layers Each layer provides services to
the layer above it and receives services from the layer below it The seven layers, from top
to bottom, are:

OSI 7 Layer Model

Level 7 Application Layer

Level 6 Presentation Layer

Level 5 Session Layer

Level 4 Transport Layer

Level 3 Network Layer

Level 2 Data Link Layer

Level 1 Physical Layer

For a networking focused interview, we suggest reviewing and understanding these con-
cepts and their implications in detail

Chapter 17 | Networking

8 4CareerCup com

17 1 Explain what happens, step by step, after you type a URL into a browser Use as much
detail as possible
 __pg 249

17 2 Explain any common routing protocol in detail For example: BGP, OSPF, RIP
 __pg 250

17 3 Compare and contrast the IPv4 and IPv6 protocols
 __pg 252

17 4 What is a network / subnet mask? Explain how host A sends a message / packet to
host B when: (a) both are on same network and (b) both are on different networks
Explain which layer makes the routing decision and how
 __pg 254

17 5 What are the differences between TCP and UDP? Explain how TCP handles reliable
delivery (explain ACK mechanism), flow control (explain TCP sender’s / receiver’s win-
dow) and congestion control
 __pg 255

Chapter 18 | Threads and Locks

Cracking the Coding Interview | Knowledge Based8 5

Chapter 18 | Threads and Locks

How to Approach:

In a Microsoft, Google or Amazon interview, it’s not terribly common to be asked to imple-
ment an algorithm with threads (unless you’re working in a team for which this is a particu-
larly important skill) It is, however, relatively common for interviewers at any company to
assess your general understanding of threads, particularly your understanding of deadlocks

Deadlock Conditions

In order for a deadlock to occur, you must have the following four conditions met:

1 Mutual Exclusion: Only one process can use a resource at a given time

2 Hold and Wait: Processes already holding a resource can request new ones

3 No Preemption: One process cannot forcibly remove another process’ resource

4 Circular Wait: Two or more processes form a circular chain where each process is wait-
ing on another resource in the chain

Deadlock Prevention

Deadlock prevention essentially entails removing one of the above conditions, but many of
these conditions are difficult to satisfy For instance, removing #1 is difficult because many
resources can only be used by one process at a time (printers, etc) Most deadlock preven-
tion algorithms focus on avoiding condition #4: circular wait

If you aren’t familiar with these concepts, please read http://en wikipedia org/wiki/Deadlock

A Simple Java Thread
1 class Foo implements Runnable {
2 public void run() {
3 while (true) beep();
4 }
5 }
6 Foo foo = new Foo ();
7 Thread myThread = new Thread(foo);
8 myThread.start();

Chapter 18 | Threads and Locks

8 6CareerCup com

18 1 What’s the difference between a thread and a process?
 __pg 257

18 2 How can you measure the time spent in a context switch?
 __pg 258

18 3 Implement a singleton design pattern as a template such that, for any given class
Foo, you can call Singleton::instance() and get a pointer to an instance of a singleton
of type Foo Assume the existence of a class Lock which has acquire() and release()
methods How could you make your implementation thread safe and exception safe?
 __pg 259

18 4 Design a class which provides a lock only if there are no possible deadlocks

 __pg 261

18 5 Suppose we have the following code:
 class Foo {
 public:
 A(.....); /* If A is called, a new thread will be created and
 * the corresponding function will be executed. */
 B(.....); /* same as above */
 C(.....); /* same as above */
 }
 Foo f;
 f.A(.....);
 f.B(.....);
 f.C(.....);

i) Can you design a mechanism to make sure that B is executed after A, and C is ex-
ecuted after B?

iii) Suppose we have the following code to use class Foo We do not know how the
threads will be scheduled in the OS

 Foo f;
 f.A(.....); f.B(.....); f.C(.....);
 f.A(.....); f.B(.....); f.C(.....);

Can you design a mechanism to make sure that all the methods will be executed in
sequence?
 __pg 262

18 6 You are given a class with synchronized method A, and a normal method C If you
have two threads in one instance of a program, can they call A at the same time? Can
they call A and C at the same time?
 __pg 264

Part 4
Additional Review Problems

Chapter 19 | Moderate

Cracking the Coding Interview | Additional Review Problems8 9

Chapter 19 | Moderate

19 1 Write a function to swap a number in place without temporary variables
 __pg 265

19 2 Design an algorithm to figure out if someone has won in a game of tic-tac-toe
 __pg 266

19 3 Write an algorithm which computes the number of trailing zeros in n factorial
 __pg 268

19 4 Write a method which finds the maximum of two numbers You should not use if-
else or any other comparison operator

EXAMPLE

Input: 5, 10

Output: 10
 __pg 269

19 5 The Game of Master Mind is played as follows:

The computer has four slots containing balls that are red (R), yellow (Y), green (G) or
blue (B) For example, the computer might have RGGB (e g , Slot #1 is red, Slots #2 and
#3 are green, Slot #4 is blue)

You, the user, are trying to guess the solution You might, for example, guess YRGB

When you guess the correct color for the correct slot, you get a “hit” If you guess
a color that exists but is in the wrong slot, you get a “pseudo-hit” For example, the
guess YRGB has 2 hits and one pseudo hit

For each guess, you are told the number of hits and pseudo-hits

Write a method that, given a guess and a solution, returns the number of hits and
pseudo hits
 __pg 270

19 6 Given an integer between 0 and 999,999, print an English phrase that describes the
integer (eg, “One Thousand, Two Hundred and Thirty Four”)

 __pg 271

19 7 You are given an array of integers (both positive and negative) Find the continuous
sequence with the largest sum Return the sum

EXAMPLE

Input: {2, -8, 3, -2, 4, -10}

Output: 5 (i e , {3, -2, 4})
 __pg 273

19 8 Design a method to find the frequency of occurrences of any given word in a book

Chapter 19 | Moderate

9 0CareerCup com

 __pg 273

19 9 Since XML is very verbose, you are given a way of encoding it where each tag gets
mapped to a pre-defined integer value The language/grammar is as follows:

 Element --> Element Attr* END Element END [aka, encode the element
 tag, then its attributes, then tack on an END character, then
 encode its children, then another end tag]
 Attr --> Tag Value [assume all values are strings]
 END --> 01
 Tag --> some predefined mapping to int
 Value --> string value END

Write code to print the encoded version of an xml element (passed in as string)

FOLLOW UP

Is there anything else you could do to (in many cases) compress this even further?
 __pg 275

19 10 Write a method to generate a random number between 1 and 7, given a method
that generates a random number between 1 and 5 (i e , implement rand7() using
rand5())
 __pg 277

19 11 Design an algorithm to find all pairs of integers within an array which sum to a speci-
fied value
 __pg 278

Chapter 20 | Hard

Cracking the Coding Interview | Additional Review Problems9 1

Chapter 20 | Hard

20 1 Write a function that adds two numbers You should not use + or any arithmetic op-
erators
 __pg 279

20 2 Write a method to shuffle a deck of cards It must be a perfect shuffle - in other words,
each 52! permutations of the deck has to be equally likely Assume that you are given
a random number generator which is perfect
 __pg 281

20 3 Write a method to randomly generate a set of m integers from an array of size n Each
element must have equal probability of being chosen
 __pg 282

20 4 Write a method to count the number of 2s between 0 and n
 __pg 283

20 5 You have a large text file containing words Given any two words, find the shortest
distance (in terms of number of words) between them in the file Can you make the
searching operation in O(1) time? What about the space complexity for your solu-
tion?
 __pg 285

20 6 Describe an algorithm to find the largest 1 million numbers in 1 billion numbers As-
sume that the computer memory can hold all one billion numbers
 __pg 286

20 7 Write a program to find the longest word made of other words in a list of words

EXAMPLE

Input: test, tester, testertest, testing, testingtester

Output: testingtester
 __pg 287

20 8 Given a string s and an array of smaller strings T, design a method to search s for each
small string in T
 __pg 288

20 9 Numbers are randomly generated and passed to a method Write a program to find
and maintain the median value as new values are generated
 __pg 290

20 10 Given two words of equal length that are in a dictionary, write a method to transform
one word into another word by changing only one letter at a time The new word you
get in each step must be in the dictionary

EXAMPLE

Chapter 20 | Hard

9 2CareerCup com

Input: DAMP, LIKE

Output: DAMP -> LAMP -> LIMP -> LIME -> LIKE
 __pg 291

20 11 Imagine you have a square matrix, where each cell is filled with either black or white
Design an algorithm to find the maximum subsquare such that all four borders are
filled with black pixels
 __pg 293

20 12 Given an NxN matrix of positive and negative integers, write code to find the sub-
matrix with the largest possible sum
 __pg 295

20 13 Given a dictionary of millions of words, give an algorithm to find the largest possible
rectangle of letters such that every row forms a word (reading left to right) and every
column forms a word (reading top to bottom)
 __pg 298

Each problem may have many 'optimal' solutions that differ in
runtime, space, clarity, extensibility, etc We have provided one

(or more) optimal solutions If you have additional solutions you
would like to contribute, please contact us at

http://www xrl us/ccbook or support@careercup com

We welcome all feedback and suggestions Contact us at
http://www xrl us/ccbook or support@careercup com

Solutions

Solutions to Chapter 1 | Arrays and Strings

Cracking the Coding Interview | Data Structures9 5

1 1 Implement an algorithm to determine if a string has all unique characters What if
you can not use additional data structures?

 pg 48

SOLUTION

For simplicity, assume char set is ASCII (if not, we need to increase the storage size The rest
of the logic would be the same) NOTE: This is a great thing to point out to your interviewer!
1 public static boolean isUniqueChars2(String str) {
2 boolean[] char_set = new boolean[256];
3 for (int i = 0; i < str.length(); i++) {
4 int val = str.charAt(i);
5 if (char_set[val]) return false;
6 char_set[val] = true;
7 }
8 return true;
9 }

Time complexity is O(n), where n is the length of the string, and space complexity is O(n)

We can reduce our space usage a little bit by using a bit vector We will assume, in the below
code, that the string is only lower case ‘a’ through ‘z’ This will allow us to use just a single int
1 public static boolean isUniqueChars(String str) {
2 int checker = 0;
3 for (int i = 0; i < str.length(); ++i) {
4 int val = str.charAt(i) - ‘a’;
5 if ((checker & (1 << val)) > 0) return false;
6 checker |= (1 << val);
7 }
8 return true;
9 }

Alternatively, we could do the following:

1 Check every char of the string with every other char of the string for duplicate occur-
rences This will take O(n^2) time and no space

2 If we are allowed to destroy the input string, we could sort the string in O(n log n) time
and then linearly check the string for neighboring characters that are identical Care-
ful, though - many sorting algorithms take up extra space

Solutions to Chapter 1 | Arrays and Strings

9 6CareerCup com

1 2 Write code to reverse a C-Style String (C-String means that “abcd” is represented as
five characters, including the null character)

 pg 48

SOLUTION

This is a classic interview question The only “gotcha” is to try to do it in place, and to be care-
ful for the null character

1 void reverse(char *str) {
2 char * end = str;
3 char tmp;
4 if (str) {
5 while (*end) {
6 ++end;
7 }
8 --end;
9 while (str < end) {
10 tmp = *str;
11 *str++ = *end;
12 *end-- = tmp;
13 }
14 }
15 }

Solutions to Chapter 1 | Arrays and Strings

Cracking the Coding Interview | Data Structures9 7

1 3 Design an algorithm and write code to remove the duplicate characters in a string
without using any additional buffer NOTE: One or two additional variables are fine
An extra copy of the array is not

FOLLOW UP

Write the test cases for this method

 pg 48

SOLUTION

First, ask yourself, what does the interviewer mean by an additional buffer? Can we use an
additional array of constant size?

Algorithm—No (Large) Additional Memory:

1 For each character, check if it is a duplicate of already found characters

2 Skip duplicate characters and update the non duplicate characters

Time complexity is O(N2)
1 public static void removeDuplicates(char[] str) {
2 if (str == null) return;
3 int len = str.length;
4 if (len < 2) return;
5
6 int tail = 1;
7
8 for (int i = 1; i < len; ++i) {
9 int j;
10 for (j = 0; j < tail; ++j) {
11 if (str[i] == str[j]) break;
12 }
13 if (j == tail) {
14 str[tail] = str[i];
15 ++tail;
16 }
17 }
18 str[tail] = 0;
19 }

Test Cases:

1 String does not contain any duplicates, e g : abcd

2 String contains all duplicates, e g : aaaa

3 Null string

4 String with all continuous duplicates, e g : aaabbb

Solutions to Chapter 1 | Arrays and Strings

9 8CareerCup com

5 String with non-contiguous duplicate, e g : abababa

Algorithm—With Additional Memory of Constant Size
1 public static void removeDuplicatesEff(char[] str) {
2 if (str == null) return;
3 int len = str.length;
4 if (len < 2) return;
5 boolean[] hit = new boolean[256];
6 for (int i = 0; i < 256; ++i) {
7 hit[i] = false;
8 }
9 hit[str[0]] = true;
10 int tail = 1;
11 for (int i = 1; i < len; ++i) {
12 if (!hit[str[i]]) {
13 str[tail] = str[i];
14 ++tail;
15 hit[str[i]] = true;
16 }
17 }
18 str[tail] = 0;
19 }

Test Cases:

1 String does not contain any duplicates, e g : abcd

2 String contains all duplicates, e g : aaaa

3 Null string

4 Empty string

5 String with all continuous duplicates, e g : aaabbb

6 String with non-contiguous duplicates, e g : abababa

Solutions to Chapter 1 | Arrays and Strings

Cracking the Coding Interview | Data Structures9 9

1 4 Write a method to decide if two strings are anagrams or not

 pg 48

SOLUTION

There are two easy ways to solve this problem:

Solution #1: Sort the strings
1 boolean anagram(String s, String t) {
2 return sort(s) == sort(t);
3 }

Solution #2: Check if the two strings have identical counts for each unique char.
1 public static boolean anagram(String s, String t) {
2 if (s.length() != t.length()) return false;
3 int[] letters = new int[256];
4 int num_unique_chars = 0;
5 int num_completed_t = 0;
6 char[] s_array = s.toCharArray();
7 for (char c : s_array) { // count number of each char in s.
8 if (letters[c] == 0) ++num_unique_chars;
9 ++letters[c];
10 }
11 for (int i = 0; i < t.length(); ++i) {
12 int c = (int) t.charAt(i);
13 if (letters[c] == 0) { // Found more of char c in t than in s.
14 return false;
15 }
16 --letters[c];
17 if (letters[c] == 0) {
18 ++num_completed_t;
19 if (num_completed_t == num_unique_chars) {
20 // it’s a match if t has been processed completely
21 return i == t.length() - 1;
22 }
23 }
24 }
25 return false;
26 }

Solutions to Chapter 1 | Arrays and Strings

1 0 0CareerCup com

1 5 Write a method to replace all spaces in a string with ‘%20’

 pg 48

SOLUTION

The algorithm is as follows:

1 Count the number of spaces during the first scan of the string

2 Parse the string again from the end and for each character:

 » If a space is encountered, store “%20”

 » Else, store the character as it is in the newly shifted location

1 public static void ReplaceFun(char[] str, int length) {
2 int spaceCount = 0, newLength, i = 0;
3 for (i = 0; i < length; i++) {
4 if (str[i] == ‘ ‘) {
5 spaceCount++;
6 }
7 }
8 newLength = length + spaceCount * 2;
9 str[newLength] = ‘\0’;
10 for (i = length - 1; i >= 0; i--) {
11 if (str[i] == ‘ ‘) {
12 str[newLength - 1] = ‘0’;
13 str[newLength - 2] = ‘2’;
14 str[newLength - 3] = ‘%’;
15 newLength = newLength - 3;
16 } else {
17 str[newLength - 1] = str[i];
18 newLength = newLength - 1;
19 }
20 }
21 }

Solutions to Chapter 1 | Arrays and Strings

Cracking the Coding Interview | Data Structures1 0 1

1 6 Given an image represented by an NxN matrix, where each pixel in the image is 4
bytes, write a method to rotate the image by 90 degrees Can you do this in place?

 pg 48

SOLUTION

The rotation can be performed in layers, where you perform a cyclic swap on the edges on
each layer In the first for loop, we rotate the first layer (outermost edges) We rotate the
edges by doing a four-way swap first on the corners, then on the element clockwise from the
edges, then on the element three steps away

Once the exterior elements are rotated, we then rotate the interior region’s edges
1 public static void rotate(int[][] matrix, int n) {
2 for (int layer = 0; layer < n / 2; ++layer) {
3 int first = layer;
4 int last = n - 1 - layer;
5 for(int i = first; i < last; ++i) {
6 int offset = i - first;
7 int top = matrix[first][i]; // save top
8 // left -> top
9 matrix[first][i] = matrix[last-offset][first];
10
11 // bottom -> left
12 matrix[last-offset][first] = matrix[last][last - offset];
13
14 // right -> bottom
15 matrix[last][last - offset] = matrix[i][last];
16
17 // top -> right
18 matrix[i][last] = top; // right <- saved top
19 }
20 }
21 }

Solutions to Chapter 1 | Arrays and Strings

1 0 2CareerCup com

1 7 Write an algorithm such that if an element in an MxN matrix is 0, its entire row and
column is set to 0

 pg 48

SOLUTION

At first glance, this problem seems easy: just iterate through the matrix and every time we
see a 0, set that row and column to 0 There’s one problem with that solution though: we
will “recognize” those 0s later on in our iteration and then set their row and column to zero
Pretty soon, our entire matrix is 0s!

One way around this is to keep a second matrix which flags the 0 locations We would then
do a second pass through the matrix to set the zeros This would take O(MN) space

Do we really need O(MN) space? No Since we’re going to set the entire row and column to
zero, do we really need to track which cell in a row is zero? No We only need to know that
row 2, for example, has a zero

The code below implement this algorithm We keep track in two arrays all the rows with
zeros and all the columns with zeros We then make a second pass of the matrix and set a cell
to zero if its row or column is zero
1 public static void setZeros(int[][] matrix) {
2 int[] row = new int[matrix.length];
3 int[] column = new int[matrix[0].length];
4 // Store the row and column index with value 0
5 for (int i = 0; i < matrix.length; i++) {
6 for (int j = 0; j < matrix[0].length;j++) {
7 if (matrix[i][j] == 0) {
8 row[i] = 1;
9 column[j] = 1;
10 }
11 }
12 }
13
14 // Set arr[i][j] to 0 if either row i or column j has a 0
15 for (int i = 0; i < matrix.length; i++) {
16 for (int j = 0; j < matrix[0].length; j++) {
17 if ((row[i] == 1 || column[j] == 1)) {
18 matrix[i][j] = 0;
19 }
20 }
21 }
22 }

Solutions to Chapter 1 | Arrays and Strings

Cracking the Coding Interview | Data Structures1 0 3

1 8 Assume you have a method isSubstring which checks if one word is a substring of
another Given two strings, s1 and s2, write code to check if s2 is a rotation of s1 using
only one call to isSubstring (i e , “waterbottle” is a rotation of “erbottlewat”)

 pg 48

SOLUTION

Just do the following checks

1 Check if length(s1) == length(s2) If not, return false

2 Else, concatenate s1 with itself and see whether s2 is substring of the result

 input: s1 = apple, s2 = pleap ==> apple is a substring of pleappleap

 input: s1 = apple, s2 = ppale ==> apple is not a substring of ppaleppale

1 public static boolean isRotation(String s1, String s2) {
2 int len = s1.length();
3 /* check that s1 and s2 are equal length and not empty */
4 if (len == s2.length() && len > 0) {
5 /* concatenate s1 and s1 within new buffer */
6 String s1s1 = s1 + s1;
7 return isSubstring(s1s1, s2);
8 }
9 return false;
10 }

Solutions to Chapter 2 | Linked Lists

Cracking the Coding Interview | Data Structures1 0 5

2 1 Write code to remove duplicates from an unsorted linked list

FOLLOW UP

How would you solve this problem if a temporary buffer is not allowed?

 pg 50

SOLUTION

If we can use a buffer, we can keep track of elements in a hashtable and remove any dups:
1 public static void deleteDups(LinkedListNode n) {
2 Hashtable table = new Hashtable();
3 LinkedListNode previous = null;
4 while (n != null) {
5 if (table.containsKey(n.data)) previous.next = n.next;
6 else {
7 table.put(n.data, true);
8 previous = n;
9 }
10 n = n.next;
11 }
12 }

Without a buffer, we can iterate with two pointers: “current” does a normal iteration, while
“runner” iterates through all prior nodes to check for dups Runner will only see one dup
per node, because if there were multiple duplicates they would have been removed already
1 public static void deleteDups2(LinkedListNode head) {
2 if (head == null) return;
3 LinkedListNode previous = head;
4 LinkedListNode current = previous.next;
5 while (current != null) {
6 LinkedListNode runner = head;
7 while (runner != current) { // Check for earlier dups
8 if (runner.data == current.data) {
9 LinkedListNode tmp = current.next; // remove current
10 previous.next = tmp;
11 current = tmp; // update current to next node
12 break; // all other dups have already been removed
13 }
14 runner = runner.next;
15 }
16 if (runner == current) { // current not updated - update now
17 previous = current;
18 current = current.next;
19 }
20 }
21 }

Solutions to Chapter 2 | Linked Lists

1 0 6CareerCup com

2 2 Implement an algorithm to find the nth to last element of a singly linked list

 pg 50

SOLUTION

Note: This problem screams recursion, but we’ll do it a different way because it’s
trickier. In a question like this, expect follow up questions about the advantages
of recursion vs iteration.

Assumption: The minimum number of nodes in list is n

Algorithm:

1 Create two pointers, p1 and p2, that point to the beginning of the node

2 Increment p2 by n-1 positions, to make it point to the nth node from the beginning (to
make the distance of n between p1 and p2)

3 Check for p2->next == null if yes return value of p1, otherwise increment p1 and p2
If next of p2 is null it means p1 points to the nth node from the last as the distance
between the two is n

4 Repeat Step 3

1 LinkedListNode nthToLast(LinkedListNode head, int n) {
2 if (head == null || n < 1) {
3 return null;
4 }
5 LinkedListNode p1 = head;
6 LinkedListNode p2 = head;
7 for (int j = 0; j < n - 1; ++j) { // skip n-1 steps ahead
8 if (p2 == null) {
9 return null; // not found since list size < n
10 }
11 p2 = p2.next;
12 }
13 while (p2.next != null) {
14 p1 = p1.next;
15 p2 = p2.next;
16 }
17 return p1;
18 }

Solutions to Chapter 2 | Linked Lists

Cracking the Coding Interview | Data Structures1 0 7

2 3 Implement an algorithm to delete a node in the middle of a single linked list, given
only access to that node

EXAMPLE

Input: the node ‘c’ from the linked list a->b->c->d->e

Result: nothing is returned, but the new linked list looks like a->b->d->e

 pg 50

SOLUTION

The solution to this is to simply copy the data from the next node into this node and then
delete the next node

NOTE: This problem can not be solved if the node to be deleted is the last node
in the linked list That’s ok—your interviewer wants to see you point that out You
could consider marking it as dummy in that case This is an issue you should dis-
cuss with your interviewer

1 public static boolean deleteNode(LinkedListNode n) {
2 if (n == null || n.next == null) {
3 return false; // Failure
4 }
5 LinkedListNode next = n.next;
6 n.data = next.data;
7 n.next = next.next;
8 return true;
9 }

Solutions to Chapter 2 | Linked Lists

1 0 8CareerCup com

2 4 You have two numbers represented by a linked list, where each node contains a sin-
gle digit The digits are stored in reverse order, such that the 1’s digit is at the head of
the list Write a function that adds the two numbers and returns the sum as a linked
list

EXAMPLE

Input: (3 -> 1 -> 5), (5 -> 9 -> 2)

Output: 8 -> 0 -> 8

 pg 50

SOLUTION

We can implement this recursively by adding node by node, just as we would digit by digit

1 result data = (node1 + node2 + any earlier carry) % 10

2 if node1 + node2 > 10, then carry a 1 to the next addition

3 add the tails of the two nodes, passing along the carry

1 LinkedListNode addLists(LinkedListNode l1, LinkedListNode l2,
2 int carry) {
3 if (l1 == null && l2 == null) {
4 return null;
5 }
6 LinkedListNode result = new LinkedListNode(carry, null, null);
7 int value = carry;
8 if (l1 != null) {
9 value += l1.data;
10 }
11 if (l2 != null) {
12 value += l2.data;
13 }
14 result.data = value % 10;
15 LinkedListNode more = addLists(l1 == null ? null : l1.next,
16 l2 == null ? null : l2.next,
17 value > 10 ? 1 : 1);
18 result.setNext(more);
19 return result;
20 }

Solutions to Chapter 2 | Linked Lists

Cracking the Coding Interview | Data Structures1 0 9

2 5 Given a circular linked list, implement an algorithm which returns node at the begin-
ning of the loop

DEFINITION

Circular linked list: A (corrupt) linked list in which a node’s next pointer points to an
earlier node, so as to make a loop in the linked list

EXAMPLE

Input: A -> B -> C -> D -> E -> C [the same C as earlier]

Output: C

 pg 50

SOLUTION

If we move two pointers, one with speed 1 and another with speed 2, they will end up meet-
ing if the linked list has a loop Why? Think about two cars driving on a track—the faster car
will always pass the slower one!

The tricky part here is finding the start of the loop Imagine, as an analogy, two people rac-
ing around a track, one running twice as fast as the other If they start off at the same place,
when will they next meet? They will next meet at the start of the next lap

Now, let’s suppose Fast Runner had a head start of k meters on an n step lap When will
they next meet? They will meet k meters before the start of the next lap (Why? Fast Runner
would have made k + 2(n - k) steps, including its head start, and Slow Runner would have
made n - k steps Both will be k steps before the start of the loop)

Now, going back to the problem, when Fast Runner (n2) and Slow Runner (n1) are moving
around our circular linked list, n2 will have a head start on the loop when n1 enters Specifi-
cally, it will have a head start of k, where k is the number of nodes before the loop Since n2
has a head start of k nodes, n1 and n2 will meet k nodes before the start of the loop

So, we now know the following:

1 Head is k nodes from LoopStart (by definition)

2 MeetingPoint for n1 and n2 is k nodes from LoopStart (as shown above)

Thus, if we move n1 back to Head and keep n2 at MeetingPoint, and move them both at the
same pace, they will meet at LoopStart

Solutions to Chapter 2 | Linked Lists

1 1 0CareerCup com

1 LinkedListNode FindBeginning(LinkedListNode head) {
2 LinkedListNode n1 = head;
3 LinkedListNode n2 = head;
4
5 // Find meeting point
6 while (n2.next != null) {
7 n1 = n1.next;
8 n2 = n2.next.next;
9 if (n1 == n2) {
10 break;
11 }
12 }
13
14 // Error check - there is no meeting point, and therefore no loop
15 if (n2.next == null) {
16 return null;
17 }
18
19 /* Move n1 to Head. Keep n2 at Meeting Point. Each are k steps
20 /* from the Loop Start. If they move at the same pace, they must
21 * meet at Loop Start. */
22 n1 = head;
23 while (n1 != n2) {
24 n1 = n1.next;
25 n2 = n2.next;
26 }
27 // Now n2 points to the start of the loop.
28 return n2;
29 }

n1 and n2 will meet here, 3
nodes from start of loop

Solutions to Chapter 3 | Stacks and Queues

Cracking the Coding Interview | Data Structures1 1 1

3 1 Describe how you could use a single array to implement three stacks

 pg 52

SOLUTION

Approach 1:

Divide the array in three equal parts and allow the individual stack to grow in that limited
space (note: “[“ means inclusive, while “(“ means exclusive of the end point)

 » for stack 1, we will use [0, n/3)

 » for stack 2, we will use [n/3, 2n/3)

 » for stack 3, we will use [2n/3, n)

This solution is based on the assumption that we do not have any extra information about
the usage of space by individual stacks and that we can’t either modify or use any extra
space With these constraints, we are left with no other choice but to divide equally
1 int stackSize = 300;
2 int[] buffer = new int [stackSize * 3];
3 int[] stackPointer = {0, 0, 0}; // stack pointers to track top elem
4
5 void push(int stackNum, int value) {
6 /* Find the index of the top element in the array + 1, and
7 * increment the stack pointer */
8 int index = stackNum * stackSize + stackPointer[stackNum] + 1;
9 stackPointer[stackNum]++;
10 buffer[index] = value;
11 }
12
13 int pop(int stackNum) {
14 int index = stackNum * stackSize + stackPointer[stackNum];
15 stackPointer[stackNum]--;
16 int value = buffer[index];
17 buffer[index]=0;
18 return value;
19 }
20
21 int peek(int stackNum) {
22 int index = stackNum * stackSize + stackPointer[stackNum];
23 return buffer[index];
24 }
25
26 boolean isEmpty(int stackNum) {
27 return stackPointer[stackNum] == stackNum*stackSize;
28 }

Solutions to Chapter 3 | Stacks and Queues

1 1 2CareerCup com

Approach 2:

In this approach, any stack can grow as long as there is any free space in the array

We sequentially allocate space to the stacks and we link new blocks to the previous block
This means any new element in a stack keeps a pointer to the previous top element of that
particular stack

In this implementation, we face a problem of unused space For example, if a stack deletes
some of its elements, the deleted elements may not necessarily appear at the end of the ar-
ray So, in that case, we would not be able to use those newly freed spaces

To overcome this deficiency, we can maintain a free list and the whole array space would be
given initially to the free list For every insertion, we would delete an entry from the free list
In case of deletion, we would simply add the index of the free cell to the free list

In this implementation we would be able to have flexibility in terms of variable space utiliza-
tion but we would need to increase the space complexity
1 int stackSize = 300;
2 int indexUsed = 0;
3 int[] stackPointer = {-1,-1,-1};
4 StackNode[] buffer = new StackNode[stackSize * 3];
5 void push(int stackNum, int value) {
6 int lastIndex = stackPointer[stackNum];
7 stackPointer[stackNum] = indexUsed;
8 indexUsed++;
9 buffer[stackPointer[stackNum]]=new StackNode(lastIndex,value);
10 }
11 int pop(int stackNum) {
12 int value = buffer[stackPointer[stackNum]].value;
13 int lastIndex = stackPointer[stackNum];
14 stackPointer[stackNum] = buffer[stackPointer[stackNum]].previous;
15 buffer[lastIndex] = null;
16 indexUsed--;
17 return value;
18 }
19 int peek(int stack) { return buffer[stackPointer[stack]].value; }
20 boolean isEmpty(int stackNum) { return stackPointer[stackNum] == -1; }
21
22 class StackNode {
23 public int previous;
24 public int value;
25 public StackNode(int p, int v){
26 value = v;
27 previous = p;
28 }
29 }

Solutions to Chapter 3 | Stacks and Queues

Cracking the Coding Interview | Data Structures1 1 3

3 2 How would you design a stack which, in addition to push and pop, also has a function
min which returns the minimum element? Push, pop and min should all operate in
O(1) time

 pg 52

SOLUTION

You can implement this by having each node in the stack keep track of the minimum be-
neath itself Then, to find the min, you just look at what the top element thinks is the min

When you push an element onto the stack, the element is given the current minimum It sets
its “local min” to be the min
1 public class StackWithMin extends Stack<NodeWithMin> {
2 public void push(int value) {
3 int newMin = Math.min(value, min());
4 super.push(new NodeWithMin(value, newMin));
5 }
6
7 public int min() {
8 if (this.isEmpty()) {
9 return Integer.MAX_VALUE;
10 } else {
11 return peek().min;
12 }
13 }
14 }
15
16 class NodeWithMin {
17 public int value;
18 public int min;
19 public NodeWithMin(int v, int min){
20 value = v;
21 this.min = min;
22 }
23 }

There’s just one issue with this: if we have a large stack, we waste a lot of space by keeping
track of the min for every single element Can we do better?

We can (maybe) do a bit better than this by using an additional stack which keeps track of
the mins
1 public class StackWithMin2 extends Stack<Integer> {
2 Stack<Integer> s2;
3 public StackWithMin2() {
4 s2 = new Stack<Integer>();

Solutions to Chapter 3 | Stacks and Queues

1 1 4CareerCup com

5 }
6 public void push(int value){
7 if (value <= min()) {
8 s2.push(value);
9 }
10 super.push(value);
11 }
12 public Integer pop() {
13 int value = super.pop();
14 if (value == min()) {
15 s2.pop();
16 }
17 return value;
18 }
19 public int min() {
20 if (s2.isEmpty()) {
21 return Integer.MAX_VALUE;
22 } else {
23 return s2.peek();
24 }
25 }
26 }

Why might this be more space efficient? If many elements have the same local min, then
we’re keeping a lot of duplicate data By having the mins kept in a separate stack, we don’t
have this duplicate data (although we do use up a lot of extra space because we have a stack
node instead of a single int)

Solutions to Chapter 3 | Stacks and Queues

Cracking the Coding Interview | Data Structures1 1 5

3 3 Imagine a (literal) stack of plates If the stack gets too high, it might topple There-
fore, in real life, we would likely start a new stack when the previous stack exceeds
some threshold Implement a data structure SetOfStacks that mimics this SetOf-
Stacks should be composed of several stacks, and should create a new stack once
the previous one exceeds capacity SetOfStacks push() and SetOfStacks pop() should
behave identically to a single stack (that is, pop() should return the same values as it
would if there were just a single stack)

FOLLOW UP

Implement a function popAt(int index) which performs a pop operation on a specific
sub-stack

 pg 52

SOLUTION

In this problem, we’ve been told what our data structure should look like:
1 class SetOfStacks {
2 ArrayList<Stack> stacks = new ArrayList<Stack>();
3 public void push(int v) { ... }
4 public int pop() { ... }
5 }

We know that push() should behave identically to a single stack, which means that we need
push() to call push on the last stack We have to be a bit careful here though: if the last stack
is at capacity, we need to create a new stack Our code should look something like this:
1 public void push(int v) {
2 Stack last = getLastStack();
3 if (last != null && !last.isAtCapacity()) { // add to last stack
4 last.push(v);
5 } else { // must create new stack
6 Stack stack = new Stack(capacity);
7 stack.push(v);
8 stacks.add(stack);
9 }
10 }

What should pop() do? It should behave similarly to push(), in that it should operate on the
last stack If the last stack is empty (after popping), then we should remove it from the list
of stacks
1 public int pop() {
2 Stack last = getLastStack();
3 int v = last.pop();
4 if (last.size == 0) stacks.remove(stacks.size() - 1);
5 return v;
6 }

Solutions to Chapter 3 | Stacks and Queues

1 1 6CareerCup com

What about the follow up question? This is a bit trickier to implement, but essentially we
should imagine a “rollover” system If we pop an element from stack 1, we need to remove
the bottom of stack 2 and push it onto stack 1 We then need to rollover from stack 3 to stack
2, stack 4 to stack 3, etc

NOTE: You could make an argument that, rather than “rolling over,” we should
be OK with some stacks not being at full capacity. This would improve the time
complexity (by a fair amount, with a large number of elements), but it might
get us into tricky situations later on if someone assumes that all stacks (other
than the last) operate at full capacity. There’s no “right answer” here; discuss this
trade-off with your interviewer!

1 public class SetOfStacks {
2 ArrayList<Stack> stacks = new ArrayList<Stack>();
3 public int capacity;
4 public SetOfStacks(int capacity) { this.capacity = capacity; }
5
6 public Stack getLastStack() {
7 if (stacks.size() == 0) return null;
8 return stacks.get(stacks.size() - 1);
9 }
10
11 public void push(int v) { /* see earlier code */ }
12 public int pop() {
13 Stack last = getLastStack();
14 System.out.println(stacks.size());
15 int v = last.pop();
16 if (last.size == 0) stacks.remove(stacks.size() - 1);
17 return v;
18 }
19
20 public int popAt(int index) {
21 return leftShift(index, true);
22 }
23
24 public int leftShift(int index, boolean removeTop) {
25 Stack stack = stacks.get(index);
26 int removed_item;
27 if (removeTop) removed_item = stack.pop();
28 else removed_item = stack.removeBottom();
29 if (stack.isEmpty()) {
30 stacks.remove(index);
31 } else if (stacks.size() > index + 1) {
32 int v = leftShift(index + 1, false);

Solutions to Chapter 3 | Stacks and Queues

Cracking the Coding Interview | Data Structures1 1 7

33 stack.push(v);
34 }
35 return removed_item;
36 }
37 }
38
39 public class Stack {
40 private int capacity;
41 public Node top, bottom;
42 public int size = 0;
43
44 public Stack(int capacity) { this.capacity = capacity; }
45 public boolean isAtCapacity() { return capacity == size; }
46
47 public void join(Node above, Node below) {
48 if (below != null) below.above = above;
49 if (above != null) above.below = below;
50 }
51
52 public boolean push(int v) {
53 if (size >= capacity) return false;
54 size++;
55 Node n = new Node(v);
56 if (size == 1) bottom = n;
57 join(n, top);
58 top = n;
59 return true;
60 }
61
62 public int pop() {
63 Node t = top;
64 top = top.below;
65 size--;
66 return t.value;
67 }
68
69 public boolean isEmpty() { return size == 0; }
70 public int removeBottom() {
71 Node b = bottom;
72 bottom = bottom.above;
73 if (bottom != null) bottom.below = null;
74 size--;
75 return b.value;
76 }
77 }

Solutions to Chapter 3 | Stacks and Queues

1 1 8CareerCup com

3 4 In the classic problem of the Towers of Hanoi, you have 3 rods and N disks of different
sizes which can slide onto any tower The puzzle starts with disks sorted in ascending
order of size from top to bottom (e g , each disk sits on top of an even larger one) You
have the following constraints:

(A) Only one disk can be moved at a time

(B) A disk is slid off the top of one rod onto the next rod

(C) A disk can only be placed on top of a larger disk

Write a program to move the disks from the first rod to the last using Stacks

 pg 52

SOLUTION

We need to move N disks from Rod 1 to Rod 3, but let’s start from the beginning Moving the
top disk is easy - we just move it to Disk 3

Can we move the top two disks? Yes:

1 Move Disk 1 from Rod 1 to Rod 2

2 Move Disk 2 from Rod 1 to Rod 3

3 Move Disk 1 from Rod 2 to Rod 3

Can we move the top three disks?

1 We know we can move the top two disks around from one Rod to another (as shown
earlier), so let’s assume we have moved Disk 1 and 2 to Rod 2

2 Move Disk 3 to Rod 3

3 Again we know we can move the top two disks around, so let’s move them from Rod 2
to Rod 3

This approach leads to a natural recursive algorithm:

1 public static void main(String[] args)
2 int n = 5;
3 Tower[] towers = new Tower[n];
4 for (int i = 0; i < 3; i++) towers[i] = new Tower(i);
5 for (int i = n - 1; i >= 0; i--) towers[0].add(i);
6 towers[0].moveDisks(n, towers[2], towers[1]);
7 }
8
9 public class Tower {
10 private Stack<Integer> disks;
11 private int index;
12 public Tower(int i) {

Solutions to Chapter 3 | Stacks and Queues

Cracking the Coding Interview | Data Structures1 1 9

13 disks = new Stack<Integer>();
14 index = i;
15 }
16
17 public int index() {
18 return index;
19 }
20
21 public void add(int d) {
22 if (!disks.isEmpty() && disks.peek() <= d) {
23 System.out.println(“Error placing disk ” + d);
24 } else {
25 disks.push(d);
26 }
27 }
28
29 public void moveTopTo(Tower t) {
30 int top = disks.pop();
31 t.add(top);
32 System.out.println(“Move disk ” + top + “ from ” + index() +
33 “ to ” + t.index());
34 }
35
36 public void print() {
37 System.out.println(“Contents of Tower “ + index());
38 for (int i = disks.size() - 1; i >= 0; i--) {
39 System.out.println(“ “ + disks.get(i));
40 }
41 }
42
43 public void moveDisks(int n, Tower destination, Tower buffer) {
44 if (n > 0) {
45 moveDisks(n - 1, buffer, destination);
46 moveTopTo(destination);
47 buffer.moveDisks(n - 1, destination, this);
48 }
49 }
50 }

Solutions to Chapter 3 | Stacks and Queues

1 2 0CareerCup com

3 5 Implement a MyQueue class which implements a queue using two stacks

 pg 52

SOLUTION

Since the major difference between a queue and a stack is the order (first-in-first-out vs last-
in-first-out), we know that we need to modify peek() and pop() to go in reverse order We
can use our second stack to reverse the order of the elements (by popping s1 and pushing
the elements on to s2) In such an implementation, on each peek() and pop() operation, we
would pop everything from s1 onto s2, perform the peek / pop operation, and then push
everything back

This will work, but if two pop / peeks are performed back-to-back, we’re needlessly moving
elements We can implement a “lazy” approach where we let the elements sit in s2

s1 will thus be ordered with the newest elements on the top, while s2 will have the oldest
elements on the top We push the new elements onto s1, and peek and pop from s2 When
s2 is empty, we’ll transfer all the elements from s1 onto s2, in reverse order
1 public class MyQueue<T> {
2 Stack<T> s1, s2;
3 public MyQueue() {
4 s1 = new Stack<T>();
5 s2 = new Stack<T>();
6 }
7
8 public int size() {
9 return s1.size() + s2.size();
10 }
11
12 public void add(T value) {
13 s1.push(value);
14 }
15
16 public T peek() {
17 if (!s2.empty()) return s2.peek();
18 while (!s1.empty()) s2.push(s1.pop());
19 return s2.peek();
20 }
21
22 public T remove() {
23 if (!s2.empty()) return s2.pop();
24 while (!s1.empty()) s2.push(s1.pop());
25 return s2.pop();
26 }
27 }

Solutions to Chapter 3 | Stacks and Queues

Cracking the Coding Interview | Data Structures1 2 1

3 6 Write a program to sort a stack in ascending order You should not make any assump-
tions about how the stack is implemented The following are the only functions that
should be used to write this program: push | pop | peek | isEmpty

 pg 52

SOLUTION

Sorting can be performed with one more stack The idea is to pull an item from the original
stack and push it on the other stack If pushing this item would violate the sort order of the
new stack, we need to remove enough items from it so that it’s possible to push the new
item Since the items we removed are on the original stack, we’re back where we started The
algorithm is O(N^2) and appears below

1 public static Stack<Integer> sort(Stack<Integer> s) {
2 Stack<Integer> r = new Stack<Integer>();
3 while(!s.isEmpty()) {
4 int tmp = s.pop();
5 while(!r.isEmpty() && r.peek() > tmp) {
6 s.push(r.pop());
7 }
8 r.push(tmp);
9 }
10 return r;
11 }

Solutions to Chapter 4 | Trees and Graphs

Cracking the Coding Interview | Data Structures1 2 3

4 1 Implement a function to check if a tree is balanced For the purposes of this question,
a balanced tree is defined to be a tree such that no two leaf nodes differ in distance
from the root by more than one

 pg 54

SOLUTION

The idea is very simple: the difference of min depth and max depth should not exceed 1,
since the difference of the min and the max depth is the maximum distance difference pos-
sible in the tree
1 public static int maxDepth(TreeNode root) {
2 if (root == null) {
3 return 0;
4 }
5 return 1 + Math.max(maxDepth(root.left), maxDepth(root.right));
6 }
7
8 public static int minDepth(TreeNode root) {
9 if (root == null) {
10 return 0;
11 }
12 return 1 + Math.min(minDepth(root.left), minDepth(root.right));
13 }
14
15 public static boolean isBalanced(TreeNode root){
16 return (maxDepth(root) - minDepth(root) <= 1);
17 }

Solutions to Chapter 4 | Trees and Graphs

1 2 4CareerCup com

4 2 Given a directed graph, design an algorithm to find out whether there is a route be-
tween two nodes

 pg 54

SOLUTION

This problem can be solved by just simple graph traversal, such as depth first search or
breadth first search We start with one of the two nodes and, during traversal, check if the
other node is found We should mark any node found in the course of the algorithm as ‘al-
ready visited’ to avoid cycles and repetition of the nodes

1 public enum State {
2 Unvisited, Visited, Visiting;
3 }
4
5 public static boolean search(Graph g, Node start, Node end) {
6 LinkedList<Node> q = new LinkedList<Node>(); // operates as Stack
7 for (Node u : g.getNodes()) {
8 u.state = State.Unvisited;
9 }
10 start.state = State.Visiting;
11 q.add(start);
12 Node u;
13 while(!q.isEmpty()) {
14 u = q.removeFirst(); // i.e., pop()
15 if (u != null) {
16 for (Node v : u.getAdjacent()) {
17 if (v.state == State.Unvisited) {
18 if (v == end) {
19 return true;
20 } else {
21 v.state = State.Visiting;
22 q.add(v);
23 }
24 }
25 }
26 u.state = State.Visited;
27 }
28 }
29 return false;
30 }

Solutions to Chapter 4 | Trees and Graphs

Cracking the Coding Interview | Data Structures1 2 5

4 3 Given a sorted (increasing order) array, write an algorithm to create a binary tree with
minimal height

 pg 54

SOLUTION

We will try to create a binary tree such that for each node, the number of nodes in the left
subtree and the right subtree are equal, if possible

Algorithm:

1 Insert into the tree the middle element of the array

2 Insert (into the left subtree) the left subarray elements

3 Insert (into the right subtree) the right subarray elements

4 Recurse

1 public static TreeNode addToTree(int arr[], int start, int end){
2 if (end < start) {
3 return null;
4 }
5 int mid = (start + end) / 2;
6 TreeNode n = new TreeNode(arr[mid]);
7 n.left = addToTree(arr, start, mid - 1);
8 n.right = addToTree(arr, mid + 1, end);
9 return n;
10 }
11
12 public static TreeNode createMinimalBST(int array[]) {
13 return addToTree(array, 0, array.length - 1);
14 }

Solutions to Chapter 4 | Trees and Graphs

1 2 6CareerCup com

4 4 Given a binary search tree, design an algorithm which creates a linked list of all the
nodes at each depth (eg, if you have a tree with depth D, you’ll have D linked lists)

 pg 54

SOLUTION

We can do a simple level by level traversal of the tree, with a slight modification of the breath-
first traversal of the tree

In a usual breath first search traversal, we simply traverse the nodes without caring which
level we are on In this case, it is critical to know the level We thus use a dummy node to
indicate when we have finished one level and are starting on the next
1 ArrayList<LinkedList<TreeNode>> findLevelLinkList(TreeNode root) {
2 int level = 0;
3 ArrayList<LinkedList<TreeNode>> result =
4 new ArrayList<LinkedList<TreeNode>>();
5 LinkedList<TreeNode> list = new LinkedList<TreeNode>();
6 list.add(root);
7 result.add(level, list);
8 while (true) {
9 list = new LinkedList<TreeNode>();
10 for (int i = 0; i < result.get(level).size(); i++) {
11 TreeNode n = (TreeNode) result.get(level).get(i);
12 if (n != null) {
13 if(n.left != null) list.add(n.left);
14 if(n.right!= null) list.add(n.right);
15 }
16 }
17 if (list.size() > 0) {
18 result.add(level + 1, list);
19 } else {
20 break;
21 }
22 level++;
23 }
24 return result;
25 }

Solutions to Chapter 4 | Trees and Graphs

Cracking the Coding Interview | Data Structures1 2 7

4 5 Write an algorithm to find the ‘next’ node (e g , in-order successor) of a given node in
a binary search tree where each node has a link to its parent

 pg 54

SOLUTION

We approach this problem by thinking very, very carefully about what happens on an in-
order traversal On an in-order traversal, we visit X left, then X, then X right

So, if we want to find X successor(), we do the following:

1 If X has a right child, then the successor must be on the right side of X (because of the
order in which we visit nodes) Specifically, the left-most child must be the first node visited
in that subtree

2 Else, we go to X’s parent (call it P)

2 a If X was a left child (P left = X), then P is the successor of X

2 b If X was a right child (P right = X), then we have fully visited P, so we call successor(P)

1 public static TreeNode inorderSucc(TreeNode e) {
2 if (e != null) {
3 TreeNode p;
4 // Found right children -> return 1st inorder node on right
5 if (e.parent == null || e.right != null) {
6 p = leftMostChild(e.right);
7 } else {
8 // Go up until we’re on left instead of right (case 2b)
9 while ((p = e.parent) != null) {
10 if (p.left == e) {
11 break;
12 }
13 e = p;
14 }
15 }
16 return p;
17 }
18 return null;
19 }
20
21 public static TreeNode leftMostChild(TreeNode e) {
22 if (e == null) return null;
23 while (e.left != null) e = e.left;
24 return e;
25 }

Solutions to Chapter 4 | Trees and Graphs

1 2 8CareerCup com

4 6 Design an algorithm and write code to find the first common ancestor of two nodes
in a binary tree Avoid storing additional nodes in a data structure NOTE: This is not
necessarily a binary search tree

 pg 54

SOLUTION

If this were a binary search tree, we could do a modified find on the two nodes and see where
the paths diverge Unfortunately, this is not a binary search tree, so we much try other ap-
proaches

Attempt #1:

If each node has a link to its parent, we could trace p and q’s paths up until they intersect

Attempt #2:

Alternatively, you could follow a chain in which p and q are on the same side That is, if p and
q are both on the left of the node, branch left to look for the common ancestor When p and
q are no longer on the same side, you must have found the first common ancestor
1 public Tree commonAncestor(Tree root, Tree p, Tree q) {
2 if (covers(root.left, p) && covers(root.left, q))
3 return commonAncestor(root.left, p, q);
4 if (covers(root.right, p) && covers(root.right, q))
5 return commonAncestor(root.right, p, q);
6 return root;
7 }
8 private boolean covers(Tree root, Tree p) { /* is p a child of root? */
9 if (root == null) return false;
10 if (root == p) return true;
11 return covers(root.left, p) || covers(root.right, p);
12 }

What is the running time of this algorithm? One way of looking at this is to see how many
times each node is touched Covers touches every child node, so we know that every single
node in the tree must be touched at least once, and many nodes are touched multiple times

Attempt #3:

For any node r, we know the following:

1 If p is on one side and q is on the other, r is the first common ancestor

2 Else, the first common ancestor is on the left or the right side

So, we can create a simple recursive algorithm called search that calls search(left side) and
search(right side) looking at how many nodes (p or q) are placed from the left side and from
the right side of the current node If there are two nodes on one of the sides, then we have

Solutions to Chapter 4 | Trees and Graphs

Cracking the Coding Interview | Data Structures1 2 9

to check if the child node on this side is p or q (because in this case the current node is the
common ancestor) If the child node is neither p nor q, we should continue to search further
(starting from the child)

If one of the searched nodes (p or q) is located on the right side of the current node, then
the other node is located on the other side Thus the current node is the common ancestor
1 static int TWO_NODES_FOUND = 2;
2 static int ONE_NODE_FOUND = 1;
3 static int NO_NODES_FOUND = 0;
4
5 // Checks how many “special” nodes are located under this root
6 int covers(TreeNode root, TreeNode p, TreeNode q) {
7 int ret = NO_NODES_FOUND;
8 if (root == null) return ret;
9 if (root == p || root == q) ret += 1;
10 ret += covers(root.left, p, q);
11 if(ret == TWO_NODES_FOUND) // Found p and q
12 return ret;
13 return ret + covers(root.right, p, q);
14 }
15
16 TreeNode commonAncestor(TreeNode root, TreeNode p, TreeNode q) {
17 if (q == p && (root.left == q || root.right == q)) return root;
18 int nodesFromLeft = covers(root.left, p, q); // Check left side
19 if (nodesFromLeft == TWO_NODES_FOUND) {
20 if(root.left == p || root.left == q) return root.left;
21 else return commonAncestor(root.left, p, q);
22 } else if (nodesFromLeft == ONE_NODE_FOUND) {
23 if (root == p) return p;
24 else if (root == q) return q;
25 }
26 int nodesFromRight = covers(root.right, p, q); // Check right side
27 if(nodesFromRight == TWO_NODES_FOUND) {
28 if(root.right == p || root.right == q) return root.right;
29 else return commonAncestor(root.right, p, q);
30 } else if (nodesFromRight == ONE_NODE_FOUND) {
31 if (root == p) return p;
32 else if (root == q) return q;
33 }
34 if (nodesFromLeft == ONE_NODE_FOUND &&
35 nodesFromRight == ONE_NODE_FOUND) return root;
36 else return null;
37 }

Solutions to Chapter 4 | Trees and Graphs

1 3 0CareerCup com

4 7 You have two very large binary trees: T1, with millions of nodes, and T2, with hun-
dreds of nodes Create an algorithm to decide if T2 is a subtree of T1

 pg 54

SOLUTION

Note that the problem here specifies that T1 has millions of nodes—this means that we
should be careful of how much space we use Let’s say, for example, T1 has 10 million
nodes—this means that the data alone is about 40 mb We could create a string representing
the inorder and preorder traversals If T2’s preorder traversal is a substring of T1’s preorder
traversal, and T2’s inorder traversal is a substring of T1’s inorder traversal, then T2 is a sub-
string of T1 We can check this using a suffix tree However, we may hit memory limitations
because suffix trees are extremely memory intensive If this become an issue, we can use an
alternative approach

Alternative Approach: The treeMatch procedure visits each node in the small tree at most
once and is called no more than once per node of the large tree Worst case runtime is at
most O(n * m), where n and m are the sizes of trees T1 and T2, respectively If k is the number
of occurrences of T2’s root in T1, the worst case runtime can be characterized as O(n + k * m)
1 boolean containsTree(TreeNode t1, TreeNode t2) {
2 if (t2 == null) return true; // The empty tree is always a subtree
3 else return subTree(t1, t2);
4 }
5
6 boolean subTree(TreeNode r1, TreeNode r2) {
7 if (r1 == null)
8 return false; // big tree empty & subtree still not found.
9 if (r1.data == r2.data) {
10 if (matchTree(r1,r2)) return true;
11 }
12 return (subTree(r1.left, r2) || subTree(r1.right, r2));
13 }
14
15 boolean matchTree(TreeNode r1, TreeNode r2) {
16 if (r2 == null && r1 == null)
17 return true; // nothing left in the subtree
18 if (r1 == null || r2 == null)
19 return false; // big tree empty & subtree still not found
20 if (r1.data != r2.data)
21 return false; // data doesn’t match
22 return (matchTree(r1.left, r2.left) &&
23 matchTree(r1.right, r2.right));
24 }
25 }

Solutions to Chapter 4 | Trees and Graphs

Cracking the Coding Interview | Data Structures1 3 1

4 8 You are given a binary tree in which each node contains a value Design an algorithm
to print all paths which sum up to that value Note that it can be any path in the tree
- it does not have to start at the root

 pg 54

SOLUTION

Let’s approach this problem by simplifying it What if the path had to start at the root? In that
case, we would have a much easier problem:

Start from the root and branch left and right, computing the sum thus far on each path
When we find the sum, we print the current path Note that we don’t stop just because
we found the sum Why? Because we could have the following path (assume we are
looking for the sum 5): 2 + 3 + –4 + 3 + 1 + 2 If we stopped once we hit 2 + 3, we’d miss
several paths (2 + 3 + -4 + 3 + 1 and 3 + -4 + 3 + 1 + 2) So, we keep going along every
possible path

Now, what if the path can start anywhere? In that case, we make a small modification On
every node, we look “up” to see if we’ve found the sum That is—rather than asking “does
this node start a path with the sum?,” we ask “does this node complete a path with the sum?”

1 void findSum(TreeNode head, int sum, ArrayList<Integer> buffer,
2 int level) {
3 if (head == null) return;
4 int tmp = sum;
5 buffer.add(head.data);
6 for (int i = level;i >- 1; i--){
7 tmp -= buffer.get(i);
8 if (tmp == 0) print(buffer, i, level);
9 }
10 ArrayList<Integer> c1 = (ArrayList<Integer>) buffer.clone();
11 ArrayList<Integer> c2 = (ArrayList<Integer>) buffer.clone();
12 findSum(head.left, sum, c1, level + 1);
13 findSum(head.right, sum, c2, level + 1);
14 }
15
16 void print(ArrayList<Integer> buffer, int level, int i2) {
17 for (int i = level; i <= i2; i++) {
18 System.out.print(buffer.get(i) + “ ”);
19 }
20 System.out.println();
21 }

What is the time complexity of this algorithm? Well, if a node is at level r, we do r amount
of work (that’s in the looking “up” step) We can take a guess at O(n lg n) (n nodes, doing an

Solutions to Chapter 4 | Trees and Graphs

1 3 2CareerCup com

average of lg n amount of work on each step), or we can be super mathematical:
There are 2^r nodes at level r.
1*2^1 + 2*2^2 + 3*2^3 + 4*2^4 + ... d * 2^d
 = sum(r * 2^r, r from 0 to depth)
 = 2 (d-1) * 2^d + 2
n = 2^d ==> d = lg n
NOTE: 2^lg(x) = x
O(2 (lg n - 1) * 2^(lg n) + 2) = O(2 (lg n - 1) * n) = O(n lg n)

Following similar logic, our space complexity is O(n lg n)

Solutions to Chapter 5 | Bit Manipulation

Cracking the Coding Interview | Concepts and Algorithms1 3 3

5 1 You are given two 32-bit numbers, N and M, and two bit positions, i and j Write a
method to set all bits between i and j in N equal to M (e g , M becomes a substring of
N located at i and starting at j)

EXAMPLE:

Input: N = 10000000000, M = 10101, i = 2, j = 6

Output: N = 10001010100

 pg 58

SOLUTION

This code operates by clearing all bits in N between position i and j, and then ORing to put
M in there
1 public static int updateBits(int n, int m, int i, int j) {
2 int max = ~0; /* All 1’s */
3
4 // 1’s through position j, then 0’s
5 int left = max - ((1 << j) - 1);
6
7 // 1’s after position i
8 int right = ((1 << i) - 1);
9
10 // 1’s, with 0s between i and j
11 int mask = left | right;
12
13 // Clear i through j, then put m in there
14 return (n & mask) | (m << i);
15 }

Solutions to Chapter 5 | Bit Manipulation

1 3 4CareerCup com

5 2 Given a (decimal - e g 3 72) number that is passed in as a string, print the binary rep-
resentation If the number can not be represented accurately in binary, print “ERROR”

 pg 58

SOLUTION

First, let’s start off by asking ourselves what a non-integer number in binary looks like By
analogy to a decimal number, the number n = 0 101 = 1 * (1/2^1) + 0 * (1/2^2) + 1 * (1/2^3)

Printing the int part of n is straight-forward (see below) To print the decimal part, we can
multiply by 2 and check if the 2*n is greater than or equal to one This is essentially “shifting”
the fractional sum That is:

r = 2*n = 2*0.101 = 1*(1 / 2^0) + 0*(1 / 2^1) + 1*(1 / 2^2) = 1.01

If r >= 1, then we know that n had a 1 right after the decimal point By doing this continu-
ously, we can check every digit
1 public static String printBinary(String n) {
2 int intPart = Integer.parseInt(n.substring(0, n.indexOf(‘.’)));
3 double decPart = Double.parseDouble(
4 n.substring(n.indexOf(‘.’), n.length()));
5 String int_string = “”;
6 while (intPart > 0) {
7 int r = intPart % 2;
8 intPart >>= 1;
9 int_string = r + int_string;
10 }
11 StringBuffer dec_string = new StringBuffer();
12 while (decPart > 0) {
13 if (dec_string.length() > 32) return “ERROR”;
14 if (decPart == 1) {
15 dec_string.append((int)decPart);
16 break;
17 }
18 double r = decPart * 2;
19 if (r >= 1) {
20 dec_string.append(1);
21 decPart = r - 1;
22 } else {
23 dec_string.append(0);
24 decPart = r;
25 }
26 }
27 return int_string + “.” + dec_string.toString();
28 }

Solutions to Chapter 5 | Bit Manipulation

Cracking the Coding Interview | Concepts and Algorithms1 3 5

5 3 Given an integer, print the next smallest and next largest number that have the same
number of 1 bits in their binary representation

 pg 58

SOLUTION

The Brute Force Approach:

An easy approach is simply brute force: count the number of 1’s in n, and then increment
(or decrement) until you find a number with the same number of 1’s Easy - but not terribly
interesting Can we do something a bit more optimal? Yes!

Number Properties Approach for Next Number

Observations:

 » If we “turn on” a 0, we need to “turn off” a 1

 » If we turn on a 0 at bit i and turn off a 1 at bit j, the number changes by 2^i - 2^j

 » If we want to get a bigger number with the same number of 1s and 0s, i must be bigger
than j

Solution:

1 Traverse from right to left Once we’ve passed a 1, turn on the next 0 We’ve now in-
creased the number by 2^i Yikes! Example: xxxxx011100 becomes xxxxx111100

2 Turn off the one that’s just to the right side of that We’re now bigger by 2^i - 2^(i-1)
Example: xxxxx111100 becomes xxxxx101100

3 Make the number as small as possible by rearranging all the 1s to be as far right as pos-
sible: Example: xxxxx101100 becomes xxxxx100011

To get the previous number, we do the reverse

1 Traverse from right to left Once we’ve passed a zero, turn off the next 1 Example:
xxxxx100011 becomes xxxxx000011

2 Turn on the 0 that is directly to the right Example: xxxxx000011 becomes
xxxxx010011

3 Make the number as big as possible by shifting all the ones as far to the left as pos-
sible Example: xxxxx010011 becomes xxxxx011100

And now, for the code Note the emphasis on pulling common code out into a reusable func-
tion Your interviewer will look for “clean code” like this

Solutions to Chapter 5 | Bit Manipulation

1 3 6CareerCup com

1 public static boolean GetBit(int n, int index) {
2 return ((n & (1 << index)) > 0);
3 }
4
5 public static int SetBit(int n, int index, boolean b) {
6 if (b) {
7 return n | (1 << index);
8 } else {
9 int mask = ~(1 << index);
10 return n & mask;
11 }
12 }
13
14 public static int GetNext_NP(int n) {
15 if (n <= 0) return -1;
16
17 int index = 0;
18 int countOnes = 0;
19
20 // Find first one.
21 while (!GetBit(n, index)) index++;
22
23 // Turn on next zero.
24 while (GetBit(n, index)) {
25 index++;
26 countOnes++;
27 }
28 n = SetBit(n, index, true);
29
30 // Turn off previous one
31 index--;
32 n = SetBit(n, index, false);
33 countOnes--;
34
35 // Set zeros
36 for (int i = index - 1; i >= countOnes; i--) {
37 n = SetBit(n, i, false);
38 }
39
40 // Set ones
41 for (int i = countOnes - 1; i >= 0; i--) {
42 n = SetBit(n, i, true);
43 }
44
45 return n;

Solutions to Chapter 5 | Bit Manipulation

Cracking the Coding Interview | Concepts and Algorithms1 3 7

46 }
47
48 public static int GetPrevious_NP(int n) {
49 if (n <= 0) return -1; // Error
50
51 int index = 0;
52 int countZeros = 0;
53
54 // Find first zero.
55 while (GetBit(n, index)) index++;
56
57 // Turn off next 1.
58 while (!GetBit(n, index)) {
59 index++;
60 countZeros++;
61 }
62 n = SetBit(n, index, false);
63
64 // Turn on previous zero
65 index--;
66 n = SetBit(n, index, true);
67 countZeros--;
68
69 // Set ones
70 for (int i = index - 1; i >= countZeros; i--) {
71 n = SetBit(n, i, true);
72 }
73
74 // Set zeros
75 for (int i = countZeros - 1; i >= 0; i--) {
76 n = SetBit(n, i, false);
77 }
78
79 return n;
80 }

Solutions to Chapter 5 | Bit Manipulation

1 3 8CareerCup com

5 4 Explain what the following code does: ((n & (n-1)) == 0)

 pg 58

SOLUTION

We can work backwards to solve this question

What does it mean if A & B == 0?

It means that A and B never have a 1 bit in the same place So if n & (n-1) == 0, then n and
n-1 never share a 1

What does n-1 look like (as compared with n)?

Try doing subtraction by hand (in base 2 or 10) What happens?

 1101011000 [base 2]
- 1
= 1101010111 [base 2]

 593100 [base 10]
- 1
= 593099 [base 10]

When you subtract 1 from a number, you look at the least significant bit If it’s a 1 you change
it to zero and you are done If it’s a zero, you must “borrow” from a larger bit So, you go to
increasingly larger bits, changing each bit from a 0 to a 1, until you find a 1 You flip that one
to a 0 and you are done

Thus, n-1 will look like n, except that n’s initial 0s will be 1’s in n-1, and n’s least significant 1
will be a 0 in (n-1) That is:

if n = abcde1000
then n-1 = abcde0111

So what does n & (n-1) == 0 indicate?

n and (n-1) must have no 1s in common Given that they look like this:
if n = abcde1000
then n-1 = abcde0111

abcde must be all 0s, which means that n must look like this: 00001000 n is therefore a
power of two

So, we have our answer: ((n & (n-1)) == 0) checks if n is a power of 2 (or 0)

Solutions to Chapter 5 | Bit Manipulation

Cracking the Coding Interview | Concepts and Algorithms1 3 9

5 5 Write a function to determine the number of bits required to convert integer A to
integer B

Input: 31, 14

Output: 2

 pg 58

SOLUTION

This seemingly complex problem is actually rather straightforward To approach this, ask
yourself how you would figure out which bits in two numbers are different Simple: with an
xor

Each 1 in the xor will represent one different bit between A and B We then simply need to
count the number of bits that are 1
1 public static int bitSwapRequired(int a, int b) {
2 int count = 0;
3 for (int c = a ^ b; c != 0; c = c >> 1) {
4 count += c & 1;
5 }
6 return count;
7 }

Solutions to Chapter 5 | Bit Manipulation

1 4 0CareerCup com

5 6 Write a program to swap odd and even bits in an integer with as few instructions as
possible (e g , bit 0 and bit 1 are swapped, bit 2 and bit 3 are swapped, etc)

 pg 58

SOLUTION

Mask all odd bits with 10101010 in binary (which is 0xAA), then shift them left to put them in
the even bits Then, perform a similar operation for even bits This takes a total 5 instructions

1 public static int swapOddEvenBits(int x) {
2 return (((x & 0xaaaaaaaa) >> 1) | ((x & 0x55555555) << 1));
3 }

Solutions to Chapter 5 | Bit Manipulation

Cracking the Coding Interview | Concepts and Algorithms1 4 1

5 7 An array A[1 n] contains all the integers from 0 to n except for one number which is
missing In this problem, we cannot access an entire integer in A with a single opera-
tion The elements of A are represented in binary, and the only operation we can use
to access them is “fetch the jth bit of A[i]”, which takes constant time Write code to
find the missing integer Can you do it in O(n) time?

 pg 58

SOLUTION

Picture a list of binary numbers between 0 to n What will change when we remove one
number? We’ll get an imbalance of 1s and 0s in the least significant bit That is, before re-
moving the number k, we have this list of least significant bits (in some order):

0 0 0 0 0 1 1 1 1 1 OR 0 0 0 0 0 1 1 1 1

Suppose we secretly removed either a 1 or a 0 from this list Could we tell which one was
removed?

remove(0 from 0 0 0 0 0 1 1 1 1 1) --> 0 0 0 0 1 1 1 1 1
remove(1 from 0 0 0 0 0 1 1 1 1 1) --> 0 0 0 0 0 1 1 1 1
remove(0 from 0 0 0 0 0 1 1 1 1) --> 0 0 0 0 1 1 1 1
remove(1 from 0 0 0 0 0 1 1 1 1) --> 0 0 0 0 0 1 1 1

Note that if 0 is removed, we always wind up with count(1) >= count(0) If 1 is removed, we
wind up with count(1) < count(0) Therefore, we can look at the least significant bit to figure
out in O(N) time whether the missing number has a 0 or a 1 in the least significant bit (LSB)
If LSB(missing) == 0, then we can discard all numbers with LSB = 1 If LSB(missing) == 1, we
can discard all numbers with LSB = 0

What about the next iteration, with the second least significant bit (SLSB)? We’ve discarded
all the numbers with LSB = 1, so our list looks something like this (if n = 5, and missing = 3):

00000
00001
00010

00100
00101
00110
00111

01000
01001
01010
01011

01100
01101

Our SLSBs now look like 0 0 1 0 1 0 Using the same logic as we applied for LSB, we can figure
out that the missing number must have SLSB = 1 Our number must look like xxxx11

Third iteration, discarding numbers with SLSB = 0:

00000
00001
00010

00100
00101
00110
00111

01000
01001
01010
01011

01100
01101

We can now compute that count(TLSB = 1) = 1 and count(TLSB = 1) = 1 Therefore, TLSB = 0
We can recurse repeatedly, building our number bit by bit:

Solutions to Chapter 5 | Bit Manipulation

1 4 2CareerCup com

1 int findMissing(ArrayList<BitInteger> array) {
2 return findMissing(array, BitInteger.INTEGER_SIZE - 1);
3 }
4
5 int findMissing(ArrayList<BitInteger> input, int column) {
6 if (column < 0) { // Base case and error condition
7 return 0;
8 }
9 ArrayList<BitInteger> oddIndices = new ArrayList<BitInteger>();
10 ArrayList<BitInteger> evenIndices = new ArrayList<BitInteger>();
11 for (BitInteger t : input) {
12 if (t.fetch(column) == 0) {
13 evenIndices.add(t);
14 } else {
15 oddIndices.add(t);
16 }
17 }
18 if (oddIndices.size() >= evenIndices.size()) {
19 return (findMissing(evenIndices, column - 1)) << 1 | 0;
20 } else {
21 return (findMissing(oddIndices, column - 1)) << 1 | 1;
22 }
23 }
24

What is the run-time of this algorithm? On the first pass, we look at O(N) bits On the second
pass, we’ve eliminated N/2 numbers, so we then look at O(N/2) bits On the third pass, we
have eliminated another half of the numbers, so we then look at O(N/4) bits If we keep go-
ing, we get an equation that looks like:

O(N) + O(N/2) + O(N/4) + O(N/8) + ... = O(2N) = O(N)

Our run-time is O(N)

Solutions to Chapter 6 | Brain Teasers

Cracking the Coding Interview | Concepts and Algorithms1 4 3

6 1 Add arithmetic operators (plus, minus, times, divide) to make the following expres-
sion true: 3 1 3 6 = 8 You can use any parentheses you’d like

 pg 60

SOLUTION

An interviewer is asking this problem to see how you think and approach problems—so
don’t just guess randomly

Try approaching this the following way: What sorts of operations would get us to 8? I can
think of a few:

4 * 2 = 8
16 / 2 = 8
4 + 4 = 8

Let’s start with the first one Is there any way to make 3 1 3 6 produce 4 * 2? We can easily
notice that 3 + 1 = 4 (the first two numbers) We can also notice that 6 / 3 = 2 If we had “3 1
6 3”, we’d be done, since (3 + 1)*(6 / 3) = 8 Although it seems a little unconventional to do
this, we can, in fact, just flip the 6 and the 3 to get the solution:

((3 + 1) / 3) * 6 = 8

Solutions to Chapter 6 | Brain Teasers

1 4 4CareerCup com

6 2 There is an 8x8 chess board in which two diagonally opposite corners have been cut
off You are given 31 dominos, and a single domino can cover exactly two squares
Can you use the 31 dominos to cover the entire board? Prove your answer (by provid-
ing an example, or showing why it’s impossible)

 pg 60

SOLUTION

Impossible Here’s why: The chess board initially has 32 black and 32 white squares By re-
moving opposite corners (which must be the same color), we’re left with 30 of one color and
32 of the other color Let’s say, for the sake of argument, that we have 30 black and 32 white
squares

When we lay down each domino, we’re taking up one white and one black square Therefore,
31 dominos will take up 31 white squares and 31 black squares exactly On this board, how-
ever, we must have 30 black squares and 32 white squares Hence, it is impossible

Solutions to Chapter 6 | Brain Teasers

Cracking the Coding Interview | Concepts and Algorithms1 4 5

6 3 You have a five quart jug and a three quart jug, and an unlimited supply of water
(but no measuring cups) How would you come up with exactly four quarts of water?

NOTE: The jugs are oddly shaped, such that filling up exactly ‘half’ of the jug would
be impossible

 pg 60

SOLUTION

We can pour water back and forth between the two jugs as follows:

5 Quart Contents 3 Quart Contents Note

5 0 Filled 5 quart jug

2 3 Filled 3Q with 5Q’s contents

0 2 Dumped 3Q

5 2 Filled 5Q

4 3 Fill remainder of 3Q with 5Q

4 Done! We have four quarts

OBSERVATIONS AND SUGGESTIONS:

 » Many brain teasers have a math / CS root to them—this is one of them! Note that as
long as the two jug sizes are relatively prime (i e , have no common prime factors), you
can find a pour sequence for any value between 1 and the sum of the jug sizes

Solutions to Chapter 6 | Brain Teasers

1 4 6CareerCup com

6 4 A bunch of men are on an island A genie comes down and gathers everyone to-
gether and places a magical hat on some people’s heads (i e , at least one person has
a hat) The hat is magical: it can be seen by other people, but not by the wearer of
the hat himself To remove the hat, those (and only those who have a hat) must dunk
themselves underwater at exactly midnight If there are n people and c hats, how
long does it take the men to remove the hats? The men cannot tell each other (in any
way) that they have a hat

FOLLOW UP

Prove that your solution is correct

 pg 60

SOLUTION

This problem seems hard, so let’s simplify it by looking at specific cases

Case c = 1: Exactly one man is wearing a hat

Assuming all the men are intelligent, the man with the hat should look around and realize
that no one else is wearing a hat Since the genie said that at least one person is wearing
a hat, he must conclude that he is wearing a hat Therefore, he would be able to remove it
that night

Case c = 2: Exactly two men are wearing hats

The two men with hats see one hat, and are unsure whether c = 1 or c = 2 They know, from
the previous case, that if c = 1, the hats would be removed on Night #1 Therefore, if the other
man still has a hat, he must deduce that c = 2, which means that he has a hat Both men
would then remove the hats on Night #2

Case General: If c = 3, then each man is unsure whether c = 2 or 3 If it were 2, the hats would
be removed on Night #2 If they are not, they must deduce that c = 3, and therefore they
have a hat We can follow this logic for c = 4, 5, …

Proof by Induction

Using induction to prove a statement P(n)

If (1) P(1) = TRUE (e g , the statement is true when n = 1)

AND (2) if P(n) = TRUE -> P(n+1) = TRUE (e g , P(n+1) is true whenever P(2) is true)

THEN P(n) = TRUE for all n >= 1

Explanation

 » Condition 2 sets up an infinite deduction chain: P(1) implies P(2) implies P(3) implies
P(n) implies P(n+1) implies

Solutions to Chapter 6 | Brain Teasers

Cracking the Coding Interview | Concepts and Algorithms1 4 7

 » Condition one (P(1) is true) ignites this chain, with truth cascading off into infinity

Base Case: c = 1 (See previous page).

Assume true for c hats. i.e., if there are c hats, it will take c nights to remove all of them.

Prove true for c+1 hats.

Each man with a hat sees c hat, and can not be immediately sure whether there are c hats or
c+1 hats However, he knows that if there are c hats, it will take exactly c nights to remove
them Therefore, when c nights have passed and everyone still has a hat, he can only con-
clude that there are c+1 hats He must know that he is wearing a hat Each man makes the
same conclusion and simultaneously removes the hats on night c+1

Therefore, we have met the principles of induction We have proven that it will take c nights
to remove c hats

Solutions to Chapter 6 | Brain Teasers

1 4 8CareerCup com

6 5 There is a building of 100 floors If an egg drops from the Nth floor or above it will
break If it’s dropped from any floor below, it will not break You’re given 2 eggs Find
N, while minimizing the number of drops for the worst case

 pg 60

SOLUTION

Observation: Regardless of how we drop Egg1, Egg2 must do a linear search i e , if Egg1
breaks between floor 10 and 15, we have to check every floor in between with the Egg2

The Approach:

A First Try: Suppose we drop an egg from the 10th floor, then the 20th, …

 » If the first egg breaks on the first drop (Floor 10), then we have at most 10 drops total

 » If the first egg breaks on the last drop (Floor 100), then we have at most 19 drops total
(floors 10, 20, ,90, 100, then 91 through 99)

 » That’s pretty good, but all we’ve considered is the absolute worst case We should do
some “load balancing” to make those two cases more even

Goal: Create a system for dropping Egg1 so that the most drops required is consistent,
whether Egg1 breaks on the first drop or the last drop

1 A perfectly load balanced system would be one in which Drops of Egg1 + Drops of
Egg2 is always the same, regardless of where Egg1 broke

2 For that to be the case, since each drop of Egg1 takes one more step, Egg2 is allowed
one fewer step

3 We must, therefore, reduce the number of steps potentially required by Egg2 by one
drop each time For example, if Egg1 is dropped on Floor 20 and then Floor 30, Egg2
is potentially required to take 9 steps When we drop Egg1 again, we must reduce
potential Egg2 steps to only 8 That is, we must drop Egg1 at floor 39

4 We know, therefore, Egg1 must start at Floor X, then go up by X-1 floors, then X-2, …,
until it gets to 100

5 Solve for X+(X-1)+(X-2)+…+1 = 100 X(X+1)/2 = 100 -> X = 14

We go to Floor 14, then 27, then 39, … This takes 14 steps maximum

Solutions to Chapter 6 | Brain Teasers

Cracking the Coding Interview | Concepts and Algorithms1 4 9

6 6 There are one hundred closed lockers in a hallway A man begins by opening all one
hundred lockers Next, he closes every second locker Then he goes to every third
locker and closes it if it is open or opens it if it is closed (e g , he toggles every third
locker) After his one hundredth pass in the hallway, in which he toggles only locker
number one hundred, how many lockers are open?

 pg 60

SOLUTION

Question: For which rounds is a door toggled (open or closed)?

A door n is toggled once for each factor of n, including itself and 1 That is, door 15 is toggled
on round 1, 3, 5, and 15

Question: When would a door be left open?

Answer: A door is left open if the number of factors (x) is odd You can think about this by
pairing factors off as an open and a close If there’s one remaining, the door will be open

Question: When would x be odd?

Answer: x is odd if n is a perfect square Here’s why: pair n’s factors by their complements
For example, if n is 36, the factors are (1, 36), (2, 18), (3, 12), (4, 9), (6, 6) Note that (6, 6) only
contributes 1 factor, thus giving n an odd number of factors

Question: How many perfect squares are there?

Answer: There are 10 perfect squares You could count them (1, 4, 9, 16, 25, 36, 49, 64, 81,
100), or you could simply realize that you can take the numbers 1 through 10 and square
them (1*1, 2*2, 3*3, , 10*10)

Therefore, there are 10 lockers open

Solutions to Chapter 7 | Object Oriented Design

Cracking the Coding Interview | Concepts and Algorithms1 5 1

7 1 Design the data structures for a generic deck of cards Explain how you would sub-
class it to implement particular card games

 pg 62

SOLUTION
1 public class Card {
2 public enum Suit {
3 CLUBS (1), SPADES (2), HEARTS (3), DIAMONDS (4);
4 int value;
5 private Suit(int v) { value = v; }
6 };
7
8 private int card;
9 private Suit suit;
10
11 public Card(int r, Suit s) {
12 card = r;
13 suit = s;
14 }
15
16 public int value() { return card; }
17 public Suit suit() { return suit; }
18 }

Assume that we’re building a blackjack game, so we need to know the value of the cards
Face cards are ten and an ace is 11 (most of the time, but that’s the job of the Hand class, not
the following class)
1 public class BlackJackCard extends Card {
2 public BlackJackCard(int r, Suit s) { super(r, s); }
3
4 public int value() {
5 int r = super.value();
6 if (r == 1) return 11; // aces are 11
7 if (r < 10) return r;
8 return 10;
9 }
10
11 boolean isAce() {
12 return super.value() == 1;
13 }
14 }

Solutions to Chapter 7 | Object Oriented Design

1 5 2CareerCup com

7 2 Imagine you have a call center with three levels of employees: fresher, technical lead
(TL), product manager (PM) There can be multiple employees, but only one TL or PM
An incoming telephone call must be allocated to a fresher who is free If a fresher
can’t handle the call, he or she must escalate the call to technical lead If the TL is
not free or not able to handle it, then the call should be escalated to PM Design the
classes and data structures for this problem Implement a method getCallHandler()

 pg 62

SOLUTION

All three ranks of employees have different work to be done, so those specific functions are
profile specific We should keep these specific things within their respective class

There are a few things which are common to them, like address, name, job title, age, etc
These things can be kept in one class and can be extended / inherited by others

Finally, there should be one CallHandler class which would route the calls to the concerned
person

NOTE: On any object oriented design question, there are many ways to design
the objects. Discuss the trade-offs of different solutions with your interviewer.
You should usually design for long term code flexibility and maintenance.

1 public class CallHandler {
2 static final int LEVELS = 3; // we have 3 levels of employees
3 static final int NUM_FRESHERS = 5; // we have 5 freshers
4 ArrayList<Employee>[] employeeLevels = new ArrayList[LEVELS];
5 // queues for each call’s rank
6 Queue<Call>[] callQueues = new LinkedList[LEVELS];
7
8 public CallHandler() { ... }
9
10 Employee getCallHandler(Call call) {
11 for (int level = call.rank; level < LEVELS - 1; level++) {
12 ArrayList<Employee> employeeLevel = employeeLevels[level];
13 for (Employee emp : employeeLevel) {
14 if (emp.free) {
15 return emp;
16 }
17 }
18 }
19 return null;
20 }
21
22 // routes the call to an available employee, or adds to a queue

Solutions to Chapter 7 | Object Oriented Design

Cracking the Coding Interview | Concepts and Algorithms1 5 3

23 void dispatchCall(Call call) {
24 // try to route the call to an employee with minimal rank
25 Employee emp = getCallHandler(call);
26 if (emp != null) {
27 emp.ReceiveCall(call);
28 } else {
29 // place the call into queue according to its rank
30 callQueues[call.rank].add(call);
31 }
32 }
33 void getNextCall(Employee e) {...} // look for call for e’s rank
34 }
35
36 class Call {
37 int rank = 0; // minimal rank of employee who can handle this call
38 public void reply(String message) { ... }
39 public void disconnect() { ... }
40 }
41
42 class Employee {
43 CallHandler callHandler;
44 int rank; // 0- fresher, 1 - technical lead, 2 - product manager
45 boolean free;
46 Employee(int rank) { this.rank = rank; }
47 void ReceiveCall(Call call) { ... }
48 void CallHandled(Call call) { ... } // call is complete
49 void CannotHandle(Call call) { // escalate call
50 call.rank = rank + 1;
51 callHandler.dispatchCall(call);
52 free = true;
53 callHandler.getNextCall(this); // look for waiting call
54 }
55 }
56
57 class Fresher extends Employee {
58 public Fresher() { super(0); }
59 }
60 class TechLead extends Employee {
61 public TechLead() { super(1); }
62 }
63 class ProductManager extends Employee {
64 public ProductManager() { super(2); }
65 }

Solutions to Chapter 7 | Object Oriented Design

1 5 4CareerCup com

7 3 Design a musical juke box using object oriented principles

 pg 62

SOLUTION

Let’s first understand the basic system components:

 » CD player

 » CD

 » Display () (displays length of song, remaining time and playlist)

Now, let’s break this down further:

 » Playlist creation (includes add, delete, shuffle etc sub functionalities)

 » CD selector

 » Track selector

 » Queueing up a song

 » Get next song from playlist

A user also can be introduced:

 » Adding

 » Deleting

 » Credit information

How do we group this functionality based on Objects (data + functions which go together)?

Object oriented design suggests wrapping up data with their operating functions in a single
entity class
1 public class CD { }
2 public class CDPlayer {
3 private Playlist p;
4 private CD c;
5 public Playlist getPlaylist() { return p; }
6 public void setPlaylist(Playlist p) { this.p = p; }
7 public CD getCD() { return c; }
8 public void setCD(CD c) { this.c = c; }
9 public CDPlayer(Playlist p) { this.p = p; }
10 public CDPlayer(CD c, Playlist p) { ... }
11 public CDPlayer(CD c) { this.c = c; }
12 public void playTrack(Song s) { ... }
13 }
14
15 public class JukeBox {

Solutions to Chapter 7 | Object Oriented Design

Cracking the Coding Interview | Concepts and Algorithms1 5 5

16 private CDPlayer cdPlayer;
17 private User user;
18 private Set<CD> cdCollection;
19 private TrackSelector ts;
20
21 public JukeBox(CDPlayer cdPlayer, User user, Set<CD> cdCollection,
22 TrackSelector ts) { ... }
23 public Song getCurrentTrack() { return ts.getCurrentSong(); }
24 public void processOneUser(User u) { this.user = u; }
25 }
26
27 public class Playlist {
28 private Song track;
29 private Queue<Song> queue;
30 public Playlist(Song track, Queue<Song> queue) { ... }
31 public Song getNextTrackToPlay(){ return queue.peek(); }
32 public void queueUpTrack(Song s){ queue.add(s); }
33 }
34
35 public class Song {
36 private String songName;
37 }
38
39 public class TrackSelector {
40 private Song currentSong;
41 public TrackSelector(Song s) { currentSong=s; }
42 public void setTrack(Song s) { currentSong = s; }
43 public Song getCurrentSong() { return currentSong; }
44 }
45
46 public class User {
47 private String name;
48 public String getName() { return name; }
49 public void setName(String name) { this.name = name; }
50 public long getID() { return ID; }
51 public void setID(long iD) { ID = iD; }
52 private long ID;
53 public User(String name, long iD) { ... }
54 public User getUser() { return this; }
55 public static User addUser(String name, long iD) { ... }
56 }

Solutions to Chapter 7 | Object Oriented Design

1 5 6CareerCup com

7 4 Design a chess game using object oriented principles

 pg 62

SOLUTION
1 public class ChessPieceTurn { };
2 public class GameManager {
3 void processTurn(PlayerBase player) { };
4 boolean acceptTurn(ChessPieceTurn turn) { return true; };
5 Position currentPosition;
6 }
7
8 public abstract class PlayerBase {
9 public abstract ChessPieceTurn getTurn(Position p);
10 }
11 class ComputerPlayer extends PlayerBase {
12 public ChessPieceTurn getTurn(Position p) { return null; }
13 public void setDifficulty() { };
14 public PositionEstimator estimater;
15 public PositionBackTracker backtracter;
16 }
17 public class HumanPlayer extends PlayerBase {
18 public ChessPieceTurn getTurn(Position p) { return null; }
19 }
20
21 public abstract class ChessPieceBase {
22 abstract boolean canBeChecked();
23 abstract boolean isSupportCastle();
24 }
25 public class King extends ChessPieceBase { ... }
26 public class Queen extends ChessPieceBase { ... }
27
28 public class Position { // represents chess positions in compact form
29 ArrayList<ChessPieceBase> black;
30 ArrayList<ChessPieceBase> white;
31 }
32
33 public class PositionBackTracker {
34 public static Position getNext(Position p) { return null; }
35 }
36 public class PositionEstimator {
37 public static PositionPotentialValue estimate(Position p) { ... }
38 }
39 public abstract class PositionPotentialValue {
40 abstract boolean lessThan(PositionPotentialValue pv);
41 }

Solutions to Chapter 7 | Object Oriented Design

Cracking the Coding Interview | Concepts and Algorithms1 5 7

7 5 Design the data structures for an online book reader system

 pg 62

SOLUTION

Since the problem doesn’t describe much about the functionality, let’s assume we want to
design a basic online reading system which provides the following functionality:

 » User membership creation and extension

 » Searching the database of books

 » Reading the books

To implement these we may require many other functions, like get, set, update, etc Objects
required would likely include User, Book, and Library

The following code / object oriented design describes this functionality:
1 public class Book {
2 private long ID;
3 private String details;
4 private static Set<Book> books;
5
6 public Book(long iD, String details) { ... }
7 public static void addBook(long iD, String details){
8 books.add(new Book(iD, details));
9 }
10
11 public void update() { }
12 public static void delete(Book b) { books.remove(b); }
13 public static Book find(long id){
14 for (Book b : books)
15 if(b.getID() == id) return b;
16 return null;
17 }
18 }
19
20 public class User {
21 private long ID;
22 private String details;
23 private int accountType;
24 private static Set<User> users;
25
26 public Book searchLibrary(long id) { return Book.find(id); }
27 public void renewMembership() { ... }
28
29 public static User find(long ID) {

Solutions to Chapter 7 | Object Oriented Design

1 5 8CareerCup com

30 for (User u : users) {
31 if (u.getID() == ID) return u;
32 }
33 return null;
34 }
35
36 public static void addUser(long ID, String details,
37 int accountType) {
38 users.add(new User(ID, details, accountType));
39 }
40
41 public User(long iD, String details, int accountType) { ... }
42 }
43
44 public class OnlineReaderSystem {
45 private Book b;
46 private User u;
47 public OnlineReaderSystem(Book b, User u) { ... }
48 public void listenRequest() { }
49 public Book searchBook(long ID) { return Book.find(ID); }
50 public User searchUser(long ID){ return User.find(ID); }
51 public void display() { }
52 }

This design is a very simplistic implementation of such a system We have a class for User to
keep all the information regarding the user, and an identifier to identify each user unique-
ly We can add functionality like registering the user, charging a membership amount and
monthly / daily quota, etc

Next, we have book class where we will keep all the book’s information We would also im-
plement functions like add / delete / update books

Finally, we have a manager class for managing the online book reader system which would
have a listen function to listen for any incoming requests to log in It also provides book
search functionality and display functionality Because the end user interacts through this
class, search must be implemented here

Solutions to Chapter 7 | Object Oriented Design

Cracking the Coding Interview | Concepts and Algorithms1 5 9

7 6 Implement a jigsaw puzzle Design the data structures and explain an algorithm to
solve the puzzle

 pg 62

SOLUTION
1 class Edge {
2 enum Type { inner, outer, flat }
3 Piece parent;
4 Type type;
5 bool fitsWith(Edge type) { ... }; // Inners & outer fit together.
6 }
7 class Piece {
8 Edge left, right, top, bottom;
9 Orientation solvedOrientation = ...; // 90, 180, etc
10 }
11 class Puzzle {
12 Piece[][] pieces; /* Remaining pieces left to put away. */
13 Piece[][] solution;
14 Edge[] inners, outers, flats;
15 /* We’re going to solve this by working our way in-wards, starting
16 * with the corners. This is a list of the inside edges. */
17 Edge[] exposed_edges;
18
19 void sort() {
20 /* Iterate through all edges, adding each to inners, outers,
21 * etc, as appropriate. Look for the corners—add those to
22 * solution. Add each non-flat edge of the corner to
23 * exposed_edges. */
24 }
25
26 void solve() {
27 foreach edge1 in exposed_edges {
28 /* Look for a match to edge1 */
29 if (edge1.type == Edge.Type.inner) {
30 foreach edge2 in outers {
31 if edge1.fitsWith(edge2) {
32 /* We found a match! Remove edge1 from
33 * exposed_edges. Add edge2’s piece to
34 * solution. Check which edges of edge2 are
35 * exposed, and add those to exposed_edges. */
36 }
37 }
38 /* Do the same thing, swapping inner & outer. */
39 }
40 }

Solutions to Chapter 7 | Object Oriented Design

1 6 0CareerCup com

41 }
42 }

Overview:

1 We grouped the edges by their type Because inners go with outers, and vice versa,
this enables us to go straight to the potential matches

We keep track of the inner perimeter of the puzzle (exposed_edges) as we work our
way inwards exposed_edges is initialized to be the corner’s edges

Solutions to Chapter 7 | Object Oriented Design

Cracking the Coding Interview | Concepts and Algorithms1 6 1

7 7 Explain how you would design a chat server In particular, provide details about the
various backend components, classes, and methods What would be the hardest
problems to solve?

 pg 62

SOLUTION

What is our chat server?

This is something you should discuss with your interviewer, but let’s make a couple of as-
sumptions: imagine we’re designing a basic chat server that needs to support a small num-
ber of users People have a contact list, they see who is online vs offline, and they can send
text-based messages to them We will not worry about supporting group chat, voice chat,
etc We will also assume that contact lists are mutual: I can only talk to you if you can talk to
me Let’s keep it simple

What specific actions does it need to support?

 » User A signs online

 » User A asks for their contact list, with each person’s current status

 » Friends of User A now see User A as online

 » User A adds User B to contact list

 » User A sends text-based message to User B

 » User A changes status message and/or status type

 » User A removes User B

 » User A signs offline

What can we learn about these requirements?
We must have a concept of users, add request status, online status, and messages

What are the core components?
We’ll need a database to store items and an “always online” application as the server We
might recommend using XML for the communication between the chat server and the
clients, as it’s easy for a person and a machine to read

What are the key objects and methods?

We have listed the key objects and methods below Note that we have hidden many of the
details, such as how to actually push the data out to a client
1 enum StatusType {
2 online, offline, away;
3 }
4

Solutions to Chapter 7 | Object Oriented Design

1 6 2CareerCup com

5 class Status {
6 StatusType status_type;
7 String status_message;
8 }
9
10 class User {
11 String username;
12 String display_name;
13 User[] contact_list;
14 AddRequest[] requests;
15 boolean updateStatus(StatusType stype, String message) { … };
16 boolean addUserWithUsername(String name);
17 boolean approveRequest(String username);
18 boolean denyRequest(String username);
19 boolean removeContact(String username);
20 boolean sendMessage(String username, String message);
21 }
22 /* Holds data that from_user would like to add to_user */
23 class AddRequest {
24 User from_user;
25 User to_user;
26 }
27 class Server {
28 User getUserByUsername(String username);
29 }

What problems would be the hardest to solve (or the most interesting)?

Q1 How do we know if someone is online—I mean, really, really know?

 While we would like users to tell us when they sign off, we can’t know for sure A user’s
connection might have died, for example To make sure that we know when a user has
signed off, we might try regularly pinging the client to make sure it’s still there

Q2 How do we deal with conflicting information?

 We have some information stored in the computer’s memory and some in the database
What happens if they get out of sync? Which one is “right”?

Q3 How do we make our server scale?

 While we designed out chat server without worrying—too much– about scalability, in
real life this would be a concern We’d need to split our data across many servers, which
would increase our concern about out of sync data

Q4 How we do prevent denial of service attacks?

 Clients can push data to us—what if they try to DOS us? How do we prevent that?

Solutions to Chapter 7 | Object Oriented Design

Cracking the Coding Interview | Concepts and Algorithms1 6 3

7 8 Othello is played as follows: Each Othello piece is white on one side and black on the
other When a piece is surrounded by its opponents on both the left and right sides,
or both the top and bottom, it is said to be captured and its color is flipped On your
turn, you must capture at least one of your opponent’s pieces The game ends when
either user has no more valid moves, and the win is assigned to the person with the
most pieces Implement the object oriented design for Othello

 pg 62

SOLUTION

Othello has these major steps:

2 Game () which would be the main function to manage all the activity in the game:

3 Initialize the game which will be done by constructor

4 Get first user input

5 Validate the input

6 Change board configuration

7 Check if someone has won the game

8 Get second user input

9 Validate the input

10 Change the board configuration

11 Check if someone has won the game

NOTE: The full code for Othello is contained in the code attachment

1 public class Question {
2 private final int white = 1;
3 private final int black = 2;
4 private int[][] board;
5
6 /* Sets up the board in the standard othello starting positions,
7 * and starts the game */
8 public void start () { ... }
9
10 /* Returns the winner, if any. If there are no winners, returns
11 * 0 */
12 private int won() {
13 if (!canGo (white) && !canGo (black)) {
14 int count = 0;

Solutions to Chapter 7 | Object Oriented Design

1 6 4CareerCup com

15 for (int i = 0; i < 8; i++) {
16 for (int j = 0; j < 8; j++) {
17 if (board [i] [j] == white) {
18 count++;
19 }
20 if (board [i] [j] == black) {
21 count--;
22 }
23 }
24 }
25 if (count > 0) return white;
26 if (count < 0) return black;
27 return 3;
28 }
29 return 0;
30 }
31
32 /* Returns whether the player of the specified color has a valid
33 * move in his turn. This will return false when
34 * 1. none of his pieces are present
35 * 2. none of his moves result in him gaining new pieces
36 * 3. the board is filled up
37 */
38 private boolean canGo(int color) { ... }
39
40 /* Returns if a move at coordinate (x,y) is a valid move for the
41 * specified player */
42 private boolean isValid(int color, int x, int y) { ... }
43
44 /* Prompts the player for a move and the coordinates for the move.
45 * Throws an exception if the input is not valid or if the entered
46 * coordinates do not make a valid move. */
47 private void getMove (int color) throws Exception { ... }
48
49 /* Adds the move onto the board, and the pieces gained from that
50 * move. Assumes the move is valid. */
51 private void add (int x, int y, int color) { ... }
52
53 /* The actual game: runs continuously until a player wins */
54 private void game() {
55 printBoard();
56 while (won() == 0) {
57 boolean valid = false;
58 while (!valid) {
59 try {
60 getMove(black);

Solutions to Chapter 7 | Object Oriented Design

Cracking the Coding Interview | Concepts and Algorithms1 6 5

61 valid = true;
62 } catch (Exception e) {
63 System.out.println (“Enter a valid coordinate!”);
64 }
65 }
66 valid = false;
67 printBoard();
68 while (!valid) {
69 try {
70 getMove(white);
71 valid = true;
72 } catch (Exception e) {
73 System.out.println (“Enter a valid coordinate!”);
74 }
75 }
76 printBoard ();
77 }
78
79 if (won()!=3) {
80 System.out.println (won () == 1 ? “white” : “black” +
81 “ won!”);
82 } else {
83 System.out.println(“It’s a draw!”);
84 }
85 }
86 }

Solutions to Chapter 7 | Object Oriented Design

1 6 6CareerCup com

7 9 Explain the data structures and algorithms that you would use to design an in-mem-
ory file system Illustrate with an example in code where possible

 pg 62

SOLUTION

For data block allocation, we can use bitmask vector and linear search (see “Practical File
System Design”) or B+ trees (see Wikipedia)
1 struct DataBlock { char data[DATA_BLOCK_SIZE]; };
2 DataBlock dataBlocks[NUM_DATA_BLOCKS];
3 struct INode { std::vector<int> datablocks; };
4 struct MetaData {
5 int size;
6 Date last_modifed, created;
7 char extra_attributes;
8 };
9 std::vector<bool> dataBlockUsed(NUM_DATA_BLOCKS);
10 std::map<string, INode *> mapFromName;
11 struct FSBase;
12 struct File : public FSBase {
13 private:
14 std::vector<INode> * nodes;
15 MetaData metaData;
16 };
17
18 struct Directory : pubic FSBase { std::vector<FSBase* > content; };
19 struct FileSystem {
20 init();
21 mount(FileSystem*);
22 unmount(FileSystem*);
23 File createFile(cosnt char* name) { ... }
24 Directory createDirectory(const char* name) { ... }
25 // mapFromName to find INode corresponding to file
26 void openFile(File * file, FileMode mode) { ... }
27 void closeFile(File * file) { ... }
28 void writeToFile(File * file, void * data, int num) { ... }
29 void readFromFile(File* file, void* res, int numbutes,
30 int position) { ... }
31 };

Solutions to Chapter 7 | Object Oriented Design

Cracking the Coding Interview | Concepts and Algorithms1 6 7

7 10 Describe the data structures and algorithms that you would use to implement a gar-
bage collector in C++

 pg 62

SOLUTION

In C++, garbage collection with reference counting is almost always implemented with
smart pointers, which perform reference counting The main reason for using smart pointers
over raw ordinary pointers is the conceptual simplicity of implementation and usage

With smart pointers, everything related to garbage collection is performed behind the
scenes - typically in constructors / destructors / assignment operator / explicit object man-
agement functions

There are two types of functions, both of which are very simple:
1 RefCountPointer::type1() {
2 /* implementation depends on reference counting organisation.
3 * There can also be no ref. counter at all (see approach #4) */
4 incrementRefCounter(); }
5
6 RefCountPointer::type2() {
7 /* Implementation depends on reference counting organisation.
8 * There can also be no ref. counter at all (see approach #4). */
9 decrementRefCounter();
10 if (referenceCounterIsZero()) {
11 destructObject();
12 }
13 }

There are several approaches for reference counting implementation in C++:

1 Simple reference counting
1 struct Object { };
2 struct RefCount {
3 int count;
4 };
5 struct RefCountPtr {
6 Object * pointee;
7 RefCount * refCount;
8 };

Advantages: performance

Disadvantages: memory overhead because of two pointers

2 Alternative reference counting

Solutions to Chapter 7 | Object Oriented Design

1 6 8CareerCup com

1 struct Object { … };
2 struct RefCountPtrImpl {
3 int count;
4 Object * object;
5 };
6 struct RefCountPtr {
7 RefCountPtrImpl * pointee;
8 };

Advantages: no memory overhead because of two pointers

Disadvantages: performance penalty because of extra level of indirection

3 Intrusive reference counting
1 struct Object { … };
2 struct ObjectIntrusiveReferenceCounting {
3 Object object;
4 int count;
5 };
6 struct RefCountPtr {
7 ObjectIntrusiveReferenceCounting * pointee;
8 };

Advantages: no previous disadvantages

Disadvantages: class for intrusive reference counting should be modified

4 Ownership list reference counting It is an alternative for approach 1-3 For 1-3 it is only
important to determine that counter is zero—its actual value is not important This is the
main idea of approach # 4

All Smart-Pointers for given objects are stored in doubly-linked lists The constructor of a
smart pointer adds the new node to a list, and the destructor removes a node from the list
and checks if the list is empty or not If it is empty, the object is deleted
1 struct Object { };
2 struct ListNode {
3 Object * pointee;
4 ListNode * next;
5 }

Solutions to Chapter 8 | Recursion

Cracking the Coding Interview | Concepts and Algorithms1 6 9

8 1 Write a method to generate the nth Fibonacci number

 pg 64

SOLUTION

There are three potential approaches: (1) recursive approach (2) iterative approach (3) using
matrix math We have described the recursive and iterative approach below, as you would
not be expected to be able to derive the matrix-based approach in an interview For the
interested math-geeks, you may read about the (most efficient) matrix-based algorithm at
http://en wikipedia org/wiki/Fibonacci_number#Matrix_form

Recursive Solution:
1 int fibo(int n) {
2 if (n == 0) {
3 return 0; // f(0) = 0
4 } else if (n == 1) {
5 return 1; // f(1) = 1
6 } else if (n > 1) {
7 return fibo(n-1) + fibo(n-2); // f(n) = f(n—1) + f(n-2)
8 } else {
9 return –1; // Error condition
10 }
11 }

Iterative Solution:
1 int fibo(int n) {
2 if (n < 0) return -1; // Error condition.
3 if (n == 0) return 0;
4 int a = 1, b = 1;
5 for (int i = 3; i <= n; i++) {
6 int c = a + b;
7 a = b;
8 b = c;
9 }
10 return b;
11 }

Solutions to Chapter 8 | Recursion

1 7 0CareerCup com

8 2 Imagine a robot sitting on the upper left hand corner of an NxN grid The robot can
only move in two directions: right and down How many possible paths are there for
the robot?

FOLLOW UP

Imagine certain squares are “off limits”, such that the robot can not step on them
Design an algorithm to get all possible paths for the robot

 pg 64

SOLUTION

Part 1: (For clarity, we will solve this part assuming an X by Y grid)

Each path has (X-1)+(Y-1) steps Imagine the following paths:
 X X Y Y X (move right -> right -> down -> down -> right)
 X Y X Y X (move right -> down -> right -> down -> right)
 ...

Each path can be fully represented by the moves at which we move right That is, if I were to
ask you which path you took, you could simply say “I moved right on step 3 and 4 ”

Since you must always move right X-1 times, and you have X-1 + Y-1 total steps, you have
to pick X-1 times to move right out of X-1+Y-1 choices Thus, there are C(X-1, X-1+Y-1) paths
(e g , X-1+Y-1 choose X-1):

 (X-1 + Y-1)! / ((X-1)! * (Y-1)!)

Part 2: Code

We can implement a simple recursive algorithm with backtracking:
1 ArrayList<Point> current_path = new ArrayList<Point>();
2 public static boolean getPaths(int x, int y) {
3 Point p = new Point(x, y);
4 current_path.add(p);
5 if (0 == x && 0 == y) return true; // current_path
6 boolean success = false;
7 if (x >= 1 && is_free(x - 1, y)) { // Try right
8 success = getPaths(x - 1, y); // Free! Go right
9 }
10 if (!success && y >= 1 && is_free(x, y - 1)) { // Try down
11 success = getPaths(x, y - 1); // Free! Go down
12 }
13 if (!success) {
14 current_path.remove(p); // Wrong way!
15 }
16 return success;
17 }

Solutions to Chapter 8 | Recursion

Cracking the Coding Interview | Concepts and Algorithms1 7 1

8 3 Write a method that returns all subsets of a set

 pg 64

SOLUTION

We should first have some reasonable expectations of our time and space complexity How
many subsets of a set are there? We can compute this by realizing that when we generate a
subset, each element has the “choice” of either being in there or not That is, for the first ele-
ment, there are 2 choices For the second, there are two, etc So, doing 2 * 2 * * 2 n times
gives us 2^n subsets We will not be able to do better than this in time or space complexity

Approach #1: Recursion

This is a great problem to implement with recursion since we can build all subsets of a set us-
ing all subsets of a smaller set Specifically, given a set S, we can do the following recursively:

 » Let first = S[0] Let smallerSet = S[1, , n]

 » Compute all subsets of smallerSet and put them in allsubsets

 » For each subset in allsubsets, clone it and add first to the subset

The following code implements this algorithm:
1 ArrayList<ArrayList<Integer>> getSubsets(ArrayList<Integer> set,
2 int index) {
3 ArrayList<ArrayList<Integer>> allsubsets;
4 if (set.size() == index) {
5 allsubsets = new ArrayList<ArrayList<Integer>>();
6 allsubsets.add(new ArrayList<Integer>()); // Empty set
7 } else {
8 allsubsets = getSubsets(set, index + 1);
9 int item = set.get(index);
10 ArrayList<ArrayList<Integer>> moresubsets =
11 new ArrayList<ArrayList<Integer>>();
12 for (ArrayList<Integer> subset : allsubsets) {
13 ArrayList<Integer> newsubset = new ArrayList<Integer>();
14 newsubset.addAll(subset); //
15 newsubset.add(item);
16 moresubsets.add(newsubset);
17 }
18 allsubsets.addAll(moresubsets);
19 }
20 return allsubsets;
21 }

Approach #2: Combinatorics

 » When we’re generating a set, we have two choices for each element: (1) the element is

Solutions to Chapter 8 | Recursion

1 7 2CareerCup com

in the set (the “yes” state) or (2) the element is not in the set (the “no” state) This means
that each subset is a sequence of yesses / nos—e g , “yes, yes, no, no, yes, no”

 » This gives us 2^n possible subsets How can we iterate through all possible sequences
of “yes” / “no” states for all elements? If each “yes” can be treated as a 1 and each “no” can
be treated as a 0, then each subset can be represented as a binary string

 » Generating all subsets then really just comes down to generating all binary numbers
(that is, all integers) Easy!

1 ArrayList<ArrayList<Integer>> getSubsets2(ArrayList<Integer> set) {
2 ArrayList<ArrayList<Integer>> allsubsets =
3 new ArrayList<ArrayList<Integer>>();
4 int max = 1 << set.size();
5 for (int i = 0; i < max; i++) {
6 ArrayList<Integer> subset = new ArrayList<Integer>();
7 int k = i;
8 int index = 0;
9 while (k > 0) {
10 if ((k & 1) > 0) {
11 subset.add(set.get(index));
12 }
13 k >>= 1;
14 index++;
15 }
16 allsubsets.add(subset);
17 }
18 return allsubsets;
19 }

Solutions to Chapter 8 | Recursion

Cracking the Coding Interview | Concepts and Algorithms1 7 3

8 4 Write a method to compute all permutations of a string

 pg 64

SOLUTION

Let’s assume a given string S represented by the letters A1, A2, A3, , An

To permute set S, we can select the first character, A1, permute the remainder of the string to
get a new list Then, with that new list, we can “push” A1 into each possible position

For example, if our string is “abc”, we would do the following:

1 Let first = “a” and let remainder = “bc”

2 Let list = permute(bc) = {“bc”, “cd”}

3 Push “a” into each location of “bc” (--> “abc”, “bac”, “bca”) and “cb” (--> “acb”, “cab”, “cba”)

4 Return our new list

Now, the code to do this:
1 public static ArrayList<String> getPerms(String s) {
2 ArrayList<String> permutations = new ArrayList<String>();
3 if (s == null) { // error case
4 return null;
5 } else if (s.length() == 0) { // base case
6 permutations.add(“”);
7 return permutations;
8 }
9
10 char first = s.charAt(0); // get the first character
11 String remainder = s.substring(1); // remove the first character
12 ArrayList<String> words = getPerms(remainder);
13 for (String word : words) {
14 for (int j = 0; j <= word.length(); j++) {
15 permutations.add(insertCharAt(word, first, j));
16 }
17 }
18 return permutations;
19 }
20
21 public static String insertCharAt(String word, char c, int i) {
22 String start = word.substring(0, i);
23 String end = word.substring(i);
24 return start + c + end;
25 }

This solution takes O(n!) time, since there are n! permutations

Solutions to Chapter 8 | Recursion

1 7 4CareerCup com

8 5 Implement an algorithm to print all valid (e g , properly opened and closed) combi-
nations of n-pairs of parentheses

EXAMPLE:

input: 3 (e g , 3 pairs of parentheses)

output: ()()(), ()(()), (())(), ((()))

 pg 64

SOLUTION

We can solve this problem recursively by recursing through the string On each iteration, we
have the index for a particular character in the string We need to select either a left or a right
paren When can we use left, and when can we use a right paren?

 » Left: As long as we haven’t used up all the left parentheses, we can always insert a left
paren

 » Right: We can insert a right paren as long as it won’t lead to a syntax error When will we
get a syntax error? We will get a syntax error if there are more right parentheses than
left

So, we simply keep track of the number of left and right parentheses allowed If there are
left parens remaining, we’ll insert a left paren and recurse If there are more right parens
remaining than left (eg, if there are more left parens used), then we’ll insert a right paren and
recurse
1 public static void printPar(int l, int r, char[] str, int count) {
2 if (l < 0 || r < l) return; // invalid state
3 if (l == 0 && r == 0) {
4 System.out.println(str); // found one, so print it
5 } else {
6 if (l > 0) { // try a left paren, if there are some available
7 str[count] = ‘(‘;
8 printPar(l - 1, r, str, count + 1);
9 }
10 if (r > l) { // try a right paren, if there’s a matching left
11 str[count] = ‘)’;
12 printPar(l, r - 1, str, count + 1);
13 }
14 }
15 }
16
17 public static void printPar(int count) {
18 char[] str = new char[count*2];
19 printPar(count, count, str, 0);
20 }

Solutions to Chapter 8 | Recursion

Cracking the Coding Interview | Concepts and Algorithms1 7 5

8 6 Implement the “paint fill” function that one might see on many image editing pro-
grams That is, given a screen (represented by a 2-dimensional array of Colors), a
point, and a new color, fill in the surrounding area until you hit a border of that color

 pg 64

SOLUTION

First, let’s visualize how this method works When we call Paint Fill (eg, “click” paint fill in the
image editing application) on, say, a green pixel, we want to “bleed” outwards Pixel by pixel,
we expand outwards calling PaintFill on the surrounding pixel When we hit a pixel that is
not green, we stop Surrounding green pixels may still be painted if they are touched by
another Paint Fill operation

We can implement this algorithm recursively:
1 enum Color {
2 Black, White, Red, Yellow, Green
3 }
4 boolean PaintFill(Color[][] screen, int x, int y, Color ocolor,
5 Color ncolor) {
6 if (x < 0 || x >= screen[0].length ||
7 y < 0 || y >= screen.length) {
8 return false;
9 }
10 if (screen[y][x] == ocolor) {
11 screen[y][x] = ncolor;
12 PaintFill(screen, x - 1, y, ocolor, ncolor); // left
13 PaintFill(screen, x + 1, y, ocolor, ncolor); // right
14 PaintFill(screen, x, y - 1, ocolor, ncolor); // top
15 PaintFill(screen, x, y + 1, ocolor, ncolor); // bottom
16 }
17 return true;
18 }
19
20 boolean PaintFill(Color[][] screen, int x, int y, Color ncolor) {
21 return PaintFill(screen, x, y, screen[y][x], ncolor);
22 }

Solutions to Chapter 8 | Recursion

1 7 6CareerCup com

8 7 Given an infinite number of quarters (25 cents), dimes (10 cents), nickels (5 cents) and
pennies (1 cent), write code to calculate the number of ways of representing n cents

 pg 64

SOLUTION

This is a recursive problem, so let’s figure out how to do makeChange(n) using prior solutions
(i e , sub-problems) Let’s say n = 100, so we want to compute the number of ways of making
change of 100 cents What’s the relationship to its sub-problems?

We know that makeChange(100):

= makeChange(100 using 0 quarters) + makeChange(100 using 1 quarter) + makeChange(100
using 2 quarter) + makeChange(100 using 3 quarter) + makeChange(100 using 4 quarter)

Can we reduce this further? Yes!

= makeChange(100 using 0 quarters) + makeChange(75 using 0 quarter) + makeChange(50
using 0 quarters) + makeChange(25 using 0 quarters) + 1

Now what? We’ve used up all our quarters, so now we can start applying our next biggest
denomination: dimes

This leads to a recursive algorithm that looks like this:
1 public static int makeChange(int n, int denom) {
2 int next_denom = 0;
3 switch (denom) {
4 case 25:
5 next_denom = 10;
6 break;
7 case 10:
8 next_denom = 5;
9 break;
10 case 5:
11 next_denom = 1;
12 break;
13 case 1:
14 return 1;
15 }
16 int ways = 0;
17 for (int i = 0; i * denom <= n; i++) {
18 ways += makeChange(n - i * denom, next_denom);
19 }
20 return ways;
21 }
22
23 System.out.writeln(makeChange(n, 25));

Solutions to Chapter 8 | Recursion

Cracking the Coding Interview | Concepts and Algorithms1 7 7

8 8 Write an algorithm to print all ways of arranging eight queens on a chess board so
that none of them share the same row, column or diagonal

 pg 64

SOLUTION

We will use a backtracking algorithm For each row, the column where we want to put the
queen is based on checking that it does not violate the required condition

1 For this, we need to store the column of the queen in each row as soon as we have finalized
it Let ColumnForRow[] be the array which stores the column number for each row

2 The checks that are required for the three given conditions are:

 » On same Column : ColumnForRow[i] == ColumnForRow[j]

 » On same Diagonal: (ColumnForRow[i] - ColumnForRow[j]) == (i- j) or
 (ColumnForRow[j] - ColumnForRow[i]) == (i - j)

1 int columnForRow[] = new int [8];
2 boolean check(int row) {
3 for (int i = 0; i < row; i++) {
4 int diff = Math.abs(columnForRow[i] - columnForRow[row]);
5 if (diff == 0 || diff == row - i) return false;
6 }
7 return true;
8 }
9
10 void PlaceQueen(int row){
11 if (row == 8) {
12 printBoard();
13 return;
14 }
15 for (int i = 0; i < 8; i++) {
16 columnForRow[row]=i;
17 if(check(row)){
18 PlaceQueen(row+1);
19 }
20 }
21 }

Solutions to Chapter 9 | Sorting and Searching

Cracking the Coding Interview | Concepts and Algorithms1 7 9

9 1 You are given two sorted arrays, A and B, and A has a large enough buffer at the end
to hold B Write a method to merge B into A in sorted order

 pg 66

SOLUTION

This code is a part of the standard merge-sort code We merge A and B from the back, by
comparing each element
1 public static void merge(int[] a, int[] b, int n, int m) {
2 int k = m + n - 1; // Index of last location of array b
3 int i = n - 1; // Index of last element in array b
4 int j = m - 1; // Index of last element in array a
5
6 // Start comparing from the last element and merge a and b
7 while (i >= 0 && j >= 0) {
8 if (a[i] > b[j]) {
9 a[k--] = a[i--];
10 } else {
11 a[k--] = b[j--];
12 }
13 }
14 while (j >= 0) {
15 a[k--] = b[j--];
16 }
17 }

Note: You don’t need to copy the contents of a after running out of b’s. They are
already in place.

Solutions to Chapter 9 | Sorting and Searching

1 8 0CareerCup com

9 2 Write a method to sort an array of strings so that all the anagrams are next to each
other

 pg 66

SOLUTION

The basic idea is to implement a normal sorting algorithm where you override the com-
pareTo method to compare the “signature” of each string In this case, the signature is the
alphabetically sorted string
1 public class AnagramComparator implements Comparator<String> {
2 public String sortChars(String s) {
3 char[] content = s.toCharArray();
4 Arrays.sort(content);
5 return new String(content);
6 }
7
8 public int compare(String s1, String s2) {
9 return sortChars(s1).compareTo(sortChars(s2));
10 }
11 }

Now, just sort the arrays, using this compareTo method instead of the usual one
12 Arrays.sort(array, new AnagramComparator());

Solutions to Chapter 9 | Sorting and Searching

Cracking the Coding Interview | Concepts and Algorithms1 8 1

9 3 Given a sorted array of n integers that has been rotated an unknown number of
times, give an O(log n) algorithm that finds an element in the array You may assume
that the array was originally sorted in increasing order

EXAMPLE:

Input: find 5 in array (15 16 19 20 25 1 3 4 5 7 10 14)

Output: 8 (the index of 5 in the array)

 pg 66

SOLUTION

We can do this with a modification of binary search
1 public static int search(int a[], int l, int u, int x) {
2 while (l <= u) {
3 int m = (l + u) / 2;
4 if (x == a[m]) {
5 return m;
6 } else if (a[l] <= a[m]) {
7 if (x > a[m]) {
8 l = m+1;
9 } else if (x >=a [l]) {
10 u = m-1;
11 } else {
12 l = m+1;
13 }
14 }
15 else if (x < a[m]) u = m-1;
16 else if (x <= a[u]) l = m+1;
17 else u = m - 1;
18 }
19 return -1;
20 }
21
22 public static int search(int a[], int x) {
23 return search(a, 0, a.length - 1, x);
24 }

What about duplicates? You may observe that the above function doesn’t give you an ef-
ficient result in case of duplicate elements However, if your array has duplicate entries then
we can’t do better than O(n) which is as good as linear search

For example, if the array is [2,2,2,2,2,2,2,2,3,2,2,2,2,2,2,2,2,2,2], there is no way to find element
3 until you do a linear search

Solutions to Chapter 9 | Sorting and Searching

1 8 2CareerCup com

9 4 If you have a 2 GB file with one string per line, which sorting algorithm would you use
to sort the file and why?

 pg 66

SOLUTION

When an interviewer gives a size limit of 2GB, it should tell you something - in this case, it
suggests that they don’t want you to bring all the data into memory

So what do we do? We only bring part of the data into memory

Algorithm:

How much memory do we have available? Let’s assume we have X MB of memory available

1 Divide the file into K chunks, where X * K = 2 GB Bring each chunk into memory and
sort the lines as usual using any O(n log n) algorithm Save the lines back to the file

2 Now bring the next chunk into memory and sort

3 Once we’re done, merge them one by one

The above algorithm is also known as external sort Step 3 is known as N-way merge

The rationale behind using external sort is the size of data Since the data is too huge and we
can’t bring it all into memory, we need to go for a disk based sorting algorithm

Solutions to Chapter 9 | Sorting and Searching

Cracking the Coding Interview | Concepts and Algorithms1 8 3

9 5 Given a sorted array of strings which is interspersed with empty strings, write a meth-
od to find the location of a given string

Example: find “ball” in [“at”, “”, “”, “”, “ball”, “”, “”, “car”, “”, “”, “dad”, “”, “”] will return 4
Example: find “ballcar” in [“at”, “”, “”, “”, “”, “ball”, “car”, “”, “”, “dad”, “”, “”] will return -1

 pg 66

SOLUTION

Use ordinary binary search, but when you hit an empty string, advance to the next non-
empty string; if there is no next non-empty string, search the left half
1 public int search(String[] strings, String str, int first, int last) {
2 while (first <= last) {
3 // Ensure there is something at the end
4 while (first <= last && strings[last] == “”) {
5 --last;
6 }
7 if (last < first) {
8 return -1; // this block was empty, so fail
9 }
10 int mid = (last + first) >> 1;
11 while (strings[mid] == “”) {
12 ++mid; // will always find one
13 }
14 int r = strings[mid].compareTo(str);
15 if (r == 0) return mid;
16 if (r < 0) {
17 first = mid + 1;
18 } else {
19 last = mid - 1;
20 }
21 }
22 return -1;
23 }
24
25 public int search(String[] strings, String str) {
26 if (strings == null || str == null) return -1;
27 if (str == “”) {
28 for (int i = 0; i < strings.length; i++) {
29 if (strings[i] == “”) return i;
30 }
31 return -1;
32 }
33 return search(strings, str, 0, strings.length - 1);
34 }

Solutions to Chapter 9 | Sorting and Searching

1 8 4CareerCup com

9 6 Given a matrix in which each row and each column is sorted, write a method to find
an element in it

 pg 66

SOLUTION

Assumptions:

 » Rows are sorted left to right in ascending order Columns are sorted top to bottom in
ascending order

 » Matrix is of size MxN

This algorithm works by elimination Every move to the left (--col) eliminates all the elements
below the current cell in that column Likewise, every move down eliminates all the elements
to the left of the cell in that row
1 boolean FindElem(int[][] mat, int elem, int M, int N) {
2 int row = 0;
3 int col = N-1;
4 while (row < M && col >= 0) {
5 if (mat[row][col] == elem) {
6 return true;
7 } else if (mat[row][col] > elem) {
8 col--;
9 } else {
10 row++;
11 }
12 }
13 return false;
14 }

Solutions to Chapter 9 | Sorting and Searching

Cracking the Coding Interview | Concepts and Algorithms1 8 5

9 7 A circus is designing a tower routine consisting of people standing atop one anoth-
er’s shoulders For practical and aesthetic reasons, each person must be both shorter
and lighter than the person below him or her Given the heights and weights of each
person in the circus, write a method to compute the largest possible number of peo-
ple in such a tower

EXAMPLE:

Input (ht, wt): (65, 100) (70, 150) (56, 90) (75, 190) (60, 95) (68, 110)

Output: The longest tower is length 6 and includes from top to bottom: (56, 90)
(60,95) (65,100) (68,110) (70,150) (75,190)

 pg 66

SOLUTION

Step 1 Sort all items by height first, and then by weight This means that if all the heights are
unique, then the items will be sorted by their height If heights are the same, items will be
sorted by their weight

Example:

 » Before sorting: (60, 100) (70, 150) (56, 90) (75, 190) (60, 95) (68,110)

 » After sorting: (56, 90), (60, 95), (60,100), (68, 110), (70,150), (75,190)

Step 2 Find the longest sequence which contains increasing heights and increasing
weights

To do this, we:
a) Start at the beginning of the sequence Currently, max_sequence is empty
b) If, for the next item, the height and the weight is not greater than those of the previous
item, we mark this item as “unfit”

(60,95) (65,100) (75,80) (80, 100)

(unfit item)

c) If the sequence found has more items than “max sequence”, it becomes “max sequence”
d) After that the search is repeated from the “unfit item”, until we reach the end of the origi-
nal sequence
1 public class Question {
2 ArrayList<HtWt> items;
3 ArrayList<HtWt> lastFoundSeq;
4 ArrayList<HtWt> maxSeq;
5

Solutions to Chapter 9 | Sorting and Searching

1 8 6CareerCup com

6 // Returns longer sequence
7 ArrayList<HtWt> seqWithMaxLength(ArrayList<HtWt> seq1,
8 ArrayList<HtWt> seq2) {
9 return seq1.size() > seq2.size() ? seq1 : seq2;
10 }
11
12 // Fills next seq w decreased wts&returns index of 1st unfit item.
13 int fillNextSeq(int startFrom, ArrayList<HtWt> seq) {
14 int firstUnfitItem = startFrom;
15 if (startFrom < items.size()) {
16 for (int i = 0; i < items.size(); i++) {
17 HtWt item = items.get(i);
18 if (i == 0 || items.get(i-1).isBefore(item)) {
19 seq.add(item);
20 } else {
21 firstUnfitItem = i;
22 }
23 }
24 }
25 return firstUnfitItem;
26 }
27
28 // Find the maximum length sequence
29 void findMaxSeq() {
30 Collections.sort(items);
31 int currentUnfit = 0;
32 while (currentUnfit < items.size()) {
33 ArrayList<HtWt> nextSeq = new ArrayList<HtWt>();
34 int nextUnfit = fillNextSeq(currentUnfit, nextSeq);
35 maxSeq = seqWithMaxLength(maxSeq, nextSeq);
36 if (nextUnfit == currentUnfit) break;
37 else currentUnfit = nextUnfit;
38 }
39 }
40 }

Solutions to Chapter 10 | Mathematical

Cracking the Coding Interview | Concepts and Algorithms1 8 7

10 1 You have a basketball hoop and someone says that you can play 1 of 2 games

Game #1: You get one shot to make the hoop

Game #2: You get three shots and you have to make 2 of 3 shots

If p is the probability of making a particular shot, for which values of p should you pick
one game or the other?

 pg 68

SOLUTION

Probability of winning Game 1: p

Probability of winning Game 2:

Let s(k,n) be the probability of making exactly k shots out of n The probability of win-
ning game 2 is s(2, 3)+s(3, 3) Since, s(k, n) = C(n, k) (1- p)^(n - k) p^k, the probability of
winning is 3 * (1 - p) * p^2 + p^3

Simplified, it becomes 3 * p^2 - 2 * p^3

You should play Game1 if P(Game1) > P(Game2):
p > 3*p^2 - 2*p^3.
1 > 3*p - 2*p^2
2*p^2 - 3*p + 1 > 0
(2p - 1)(p - 1) > 0

Both terms must be positive or both must be negative But we know p < 1, so (p - 1) < 0 This
means both terms must be negative

(2p - 1) < 0
2p < 1
p < .5

So, we should play Game1 if p < 5

Solutions to Chapter 10 | Mathematical

1 8 8CareerCup com

10 2 There are three ants on different vertices of a triangle What is the probability of colli-
sion (between any two or all of them) if they start walking on the sides of the triangle?

Similarly find the probability of collision with ‘n’ ants on an ‘n’ vertex polygon

 pg 68

SOLUTION

None of the three ants will collide if all three are moving in clockwise direction, or all three
are moving in a counter-clockwise direction Otherwise, there will definitely be a collision

How many ways are there for the three ants to move? Each ant can move in 2 directions, so
there are 2^3 ways the ant can move There are only two ways which will avoid a collision,
therefore the probability of collision is (2^3 – 2) / (2^3) = 6 / 8 = 3 / 4

To generalize this to an n-vertex polygon: there are still only 2 ways in which the ants can
move to avoid a collision, but there are 2^n ways they can move total Therefore, in general,
probability of collision is (2^n – 2) / 2^n = 1 – 1/2^(n-1)

Solutions to Chapter 10 | Mathematical

Cracking the Coding Interview | Concepts and Algorithms1 8 9

10 3 Given two lines on a Cartesian plane, determine whether the two lines would inter-
sect

 pg 68

SOLUTION

There are a lot of unknowns in this problem (what format are the lines in? What if they are the
same line?), but let’s assume:

 » If two lines are the same (same line = same slope and y-intercept), they are considered
to intersect

 » We get to decide the data structure
1 public class Line {
2 static double epsilon = 0.000001;
3 public double slope;
4 public double yintercept;
5
6 public Line(double s, double y) {
7 slope = s;
8 yintercept = y;
9 }
10
11 public boolean intersect(Line line2) {
12 return Math.abs(slope - line2.slope) > epsilon ||
13 Math.abs(yintercept - line2.yintercept) < epsilon;
14 }
15 }

OBSERVATIONS AND SUGGESTIONS:

 » Ask questions This question has a lot of unknowns—ask questions to clarify them Many
interviewers intentionally ask vague questions to see if you’ll clarify your assumptions

 » When possible, design and use data structures It shows that you understand and care
about object oriented design

 » Think through which data structures you design to represent a line There are a lot of
options, with lots of trade offs Pick one and explain your choice

 » Don’t assume that the slope and y-intercept are integers

 » Understand limitations of floating point representations Never check for equality with
==

Solutions to Chapter 10 | Mathematical

1 9 0CareerCup com

10 4 Write a method to implement *, - , / operations You should use only the + operator

 pg 68

SOLUTION

With an understanding of what each operation (minus, times, divide) does, this problem can
be approached logically

 » Subtraction should be relatively straightforward, as we all know that a - b is the same
thing as a + (-1)*b

 » Multiplication: we have to go back to what we learned in grade school: 21 * 3 = 21 + 21
+ 21 It’s slow, but it works

 » Division is the trickiest, because we usually think of 21 / 3 as something like “if you divide
a 21 foot board into 3 pieces, how big is each piece?” If we think about it the other way
around, it’s a little easier: “I divided a 21 foot board in x pieces and got pieces of 3 feet
each, how many pieces were there?” From here, we can see that if we continuously sub-
tract 3 feet from 21 feet, we’ll know how many pieces there are That is, we continuously
subtract b from a and count how many times we can do that

1 /* Flip a positive sign to negative, or a negative sign to pos */
2 public static int FnNegate(int a) {
3 int neg = 0;
4 int d = a < 0 ? 1 : -1;
5 while (a != 0) {
6 neg += d;
7 a += d;
8 }
9 return neg;
10 }
11
12 /* Subtract two numbers by negating b and adding them */
13 public static int FnMinus(int a, int b) {
14 return a + FnNegate(b);
15 }
16
17 /* Check if a and b are different signs */
18 public static boolean DifferentSigns(int a, int b) {
19 return ((a < 0 && b > 0) || (a > 0 && b < 0)) ? true : false;
20 }
21
22 /* Return absolute value */
23 public static int abs(int a) {
24 if (a < 0) return FnNegate(a);
25 else return a;
26 }

Solutions to Chapter 10 | Mathematical

Cracking the Coding Interview | Concepts and Algorithms1 9 1

27
28 /* Multiply a by b by adding a to itself b times */
29 public static int FnTimes(int a, int b) {
30 if (a < b) return FnTimes(b, a); // algo is faster if b < a
31 int sum = 0;
32 for (int iter = abs(b); iter > 0; --iter) sum += a;
33 if (b < 0) sum = FnNegate(sum);
34 return sum;
35 }
36
37 /* Divide a by b by literally counting how many times does b go into
38 * a. That is, count how many times you can subtract b from a until
39 * you hit 0. */
40 public static int FnDivide(int a, int b) throws
41 java.lang.ArithmeticException {
42 if (b == 0) {
43 throw new java.lang.ArithmeticException(“Divide by 0.”);
44 }
45 int quotient = 0;
46 int divisor = FnNegate(abs(b));
47 int divend; /* dividend */
48 for (divend = abs(a); divend >= abs(divisor); divend += divisor) {
49 ++quotient;
50 }
51 if (DifferentSigns(a, b)) quotient = FnNegate(quotient);
52 return quotient;
53 }

OBSERVATIONS AND SUGGESTIONS

 » A logical approach of going back to what exactly multiplication and division do comes
in handy Remember that All (good) interview problems can be approached in a logi-
cal, methodical way!

 » The interviewer is looking for this sort of logical work-your-way-through-it approach

 » This is a great problem to demonstrate your ability to write clean code—specifically,
to show your ability to re-use code For example, if you were writing this solution and
didn’t put FnNegate in its own method, you should move it out once you see that you’ll
use it multiple times

 » Be careful about making assumptions while coding Don’t assume that the numbers are
all positive, or that a is bigger than b

Solutions to Chapter 10 | Mathematical

1 9 2CareerCup com

10 5 Given two squares on a two dimensional plane, find a line that would cut these two
squares in half

 pg 68

SOLUTION

Any line that goes through the center of a rectangle must cut it in half Therefore, if you drew
a line connecting the centers of the two squares, it would cut both in half
1 public class Square {
2 public double left;
3 public double top;
4 public double bottom;
5 public double right;
6 public Square(double left, double top, double size) {
7 this.left = left;
8 this.top = top;
9 this.bottom = top + size;
10 this.right = left + size;
11 }
12
13 public Point middle() {
14 return new Point((this.left + this.right) / 2,
15 (this.top + this.bottom) / 2);
16 }
17
18 public Line cut(Square other) {
19 Point middle_s = this.middle();
20 Point middle_t = other.middle();
21 if (middle_s == middle_t) {
22 return new Line(new Point(left, top),
23 new Point(right, bottom));
24 } else {
25 return new Line(middle_s, middle_t);
26 }
27 }
28 }

SUGGESTIONS AND OBSERVATIONS

The main point of this problem is to see how careful you are about coding It’s easy to glance
over the special cases (e g , the two squares having the same middle) Make a list of these
special cases before you start the problem and make sure to handle them appropriately

Solutions to Chapter 10 | Mathematical

Cracking the Coding Interview | Concepts and Algorithms1 9 3

10 6 Given a two dimensional graph with points on it, find a line which passes the most
number of points

 pg 68

SOLUTION

If we draw a line between every two points, we can check to see which line is the most com-
mon A brute force approach would be to simply iterate through each line segment (formed
by pairs of points) and count how many points fall on it This would take O(N^3) time

Before we discuss if we can do better, let’s figure out how we can represent a line A line can
be represented in (at least) two different ways: (1) as a pairing of points or (2) as a slope and
a y-intercept

Because our line is infinite, the slope and y-intercept approach seems more appropriate
The slope and y-intercept approach has an additional advantage: every line segment on the
same greater line will have identical slopes and y-intercepts

Let’s re-think our solution We have a bunch of line segments, represented as a slope and
y-intercept, and we want to find the most common slope and y-intercept How can we find
the most common one?

This is really no different than the old “find the most common number in a list of numbers”
problem We just iterate through the lines segments and use a hash table to count the num-
ber of times we’ve seen each line
1 public static Line findBestLine(GraphPoint[] points) {
2 Line bestLine = null;
3 HashMap<Line, Integer> line_count = new HashMap<Line, Integer>();
4 for (int i = 0; i < points.length; i++) {
5 for (int j = i + 1; j < points.length; j++) {
6 Line line = new Line(points[i], points[j]);
7 if (!line_count.containsKey(line)) {
8 line_count.put(line, 0);
9 }
10 line_count.put(line, line_count.get(line) + 1);
11 if (bestLine == null ||
12 line_count.get(line) > line_count.get(bestLine)) {
13 bestLine = line;
14 }
15 }
16 }
17 return bestLine;
18 }
19
20 public class Line {
21 private static double epsilon = .0001;

Solutions to Chapter 10 | Mathematical

1 9 4CareerCup com

22 public double slope;
23 public double intercept;
24 private boolean infinite_slope = false;
25 public Line(GraphPoint p, GraphPoint q) {
26 if (Math.abs(p.x - q.x) > epsilon) { // if x’s are different
27 slope = (p.y - q.y) / (p.x - q.x); // compute slope
28 intercept = p.y - slope * p.x; // y intercept from y=mx+b
29 } else {
30 infinite_slope = true;
31 intercept = p.x; // x-intercept, since slope is infinite
32 }
33 }
34
35 public boolean isEqual(double a, double b) {
36 return (Math.abs(a - b) < epsilon);
37 }
38
39 @Override
40 public int hashCode() {
41 int sl = (int)(slope * 1000);
42 int in = (int)(intercept * 1000);
43 return sl | in;
44 }
45
46 @Override
47 public boolean equals(Object o) {
48 Line l = (Line) o;
49 if (isEqual(l.slope, slope) && isEqual(l.intercept, intercept)
50 && (infinite_slope == l.infinite_slope)) {
51 return true;
52 }
53 return false;
54 }
55 }

OBSERVATIONS AND SUGGESTIONS

 » Be careful about the calculation of the slope of a line The line might be completely
vertical We can keep track of this in a separate flag (infinite_slope) We need to check
this condition in the equals method

 » Remember that when we perform division to calculate the slope, division is not exact
Therefore, rather than checking to see if two slopes are exactly equal, we need to check
if they’re different by greater than epsilon

Solutions to Chapter 10 | Mathematical

Cracking the Coding Interview | Concepts and Algorithms1 9 5

10 7 Design an algorithm to find the kth number such that the only prime factors are 3,
5, and 7

 pg 68

SOLUTION

Any such number will look like (3^i)*(5^j)*(7^k) Here are the first 13 numbers:

1 - 3^0 * 5^0 * 7 ^ 0

3 3 3^1 * 5^0 * 7 ^ 0

5 5 3^0 * 5^1 * 7 ^ 0

7 7 3^0 * 5^0 * 7 ^ 1

9 3*3 3^2 * 5^0 * 7 ^ 0

15 3*5 3^1 * 5^1 * 7 ^ 0

21 3*7 3^1 * 5^0 * 7 ^ 1

25 5*5 3^0 * 5^2 * 7 ^ 0

27 3*9 3^3 * 5^0 * 7 ^ 0

35 5*7 3^0 * 5^1 * 7 ^1

45 5*9 3^2 * 5^1 * 7 ^0

49 7*7 3^0 * 5^0 * 7 ^2

63 3*21 3^2 * 5^0 * 7 ^1

 » 3 * (previous number in list)

 » 5 * (previous number in list)

 » 7 * (previous number in list)

How would we find the next number in the list? Well, we could multiply 3, 5 and 7 times each
number in the list and find the smallest element that has not yet been added to our list This
solution is O(n^2) Not bad, but I think we can do better

In our current algorithm, we’re doing 3*1, 3*3, 3*5, 3*7, 3*9, 3*15, 3*21, 3*25 …, and the same
for 5 and 7 We’ve already done almost all this work before—why are we doing it again?

We can fix this by multiplying each number we add to our list by 3, 5, 7 and putting the re-
sults in one of the three first-in-first-out queues To look for the next “magic” number, we pick
the smallest element in the three queues Here is the algorithm:

1. Initialize array magic and queues Q3, Q5 and Q7
2. Insert 1 into magic.
3. Insert 1*3, 1*5 and 1*7 into Q3, Q5 and Q7 respectively.
4. Let x be the minimum element in Q3, Q5 and Q7. Append x to magic.
5. If x was found in:

Solutions to Chapter 10 | Mathematical

1 9 6CareerCup com

 Q3 -> append x*3, x*5 and x*7 to Q3, Q5 and Q7. Remove x from Q3.
 Q5 -> append x*5 and x*7 to Q5 and Q7. Remove x from Q5.
 Q7 -> only append x*7 to Q7. Remove x from Q7.

Note: we do not need to append x*3 and x*5 to all lists because
they will already be found in another list.

6. Repeat steps 4 - 6 until we’ve found k elements.

1 public static int getKthMagicNumber(int k) {
2 if (k <= 0) return 0;
3 int val = 1;
4 Queue<Integer> Q3 = new LinkedList<Integer>();
5 Queue<Integer> Q5 = new LinkedList<Integer>();
6 Queue<Integer> Q7 = new LinkedList<Integer>();
7 Q3.add(3);
8 Q5.add(5);
9 Q7.add(7);
10 for (--k; k > 0; --k) { // We’ve done one iteration already.
11 val = Math.min(Q3.peek().intValue(),
12 Math.min(Q5.peek().inValue(), Q7.peek().intValue()));
13 if (val == Q7.peek()) {
14 Q7.remove();
15 } else {
16 if (val == Q5.peek()) {
17 Q5.remove();
18 } else { // must be from Q3
19 Q3.remove();
20 Q3.add(val * 3);
21 }
22 Q5.add(val * 5);
23 }
24 Q7.add(val * 7);
25 }
26 return val;
27 }

OBSERVATIONS AND SUGGESTIONS:

When you get this question, do your best to solve it—even though it’s really difficult Explain
a brute force approach (not as tricky) and then start thinking about how you can optimize it
Or, try to find a pattern in the numbers

Chances are, your interviewer will help you along when you get stuck Whatever you do,
don’t give up! Think out loud, wonder aloud, explain your thought process Your interviewer
will probably jump in to guide you

Solutions to Chapter 11 | System Design and Memory Limits

Cracking the Coding Interview | Concepts and Algorithms1 9 7

11 1 If you were integrating a feed of end of day stock price information (open, high, low,
and closing price) for 5,000 companies, how would you do it? You are responsible for
the development, rollout and ongoing monitoring and maintenance of the feed De-
scribe the different methods you considered and why you would recommend your
approach The feed is delivered once per trading day in a comma-separated format
via an FTP site The feed will be used by 1000 daily users in a web application

 pg 72

SOLUTION

Let’s assume we have some scripts which are scheduled to get the data via FTP at the end of
the day Where do we store the data? How do we store the data in such a way that we can
do various analyses of it?

Proposal #1

Keep the data in text files This would be very difficult to manage and update, as well as very
hard to query Keeping unorganized text files would lead to a very inefficient data model

Proposal #2

We could use a database This provides the following benefits:

 » Logical storage of data

 » Facilitates an easy way of doing query processing over the data

Example: return all stocks having open > N AND closing price < M

Advantages:

 » Makes the maintenance easy once installed properly

 » Roll back, backing up data, and security could be provided using standard database
features We don’t have to “reinvent the wheel ”

Proposal #3

If requirements are not that broad and we just want to do a simple analysis and distribute the
data, then XML could be another good option

Our data has fixed format and fixed size: company_name, open, high, low, closing price The
XML could look like this:

<root>
<date value=“2008-10-12”>
 <company name=“foo”>
 <open>126.23</open>
 <high>130.27</high>
 <low>122.83</low>

Solutions to Chapter 11 | System Design and Memory Limits

1 9 8CareerCup com

 <closingPrice>127.30</closingPrice>
 </company>
 <company name=“bar”>
 <open>52.73</open>
 <high>60.27</high>
 <low>50.29</low>
 <closingPrice>54.91</closingPrice>
 </company>
 </date>
 <date value=“2008-10-11”> . . . </date>
</root>

Benefits:

 » Very easy to distribute This is one reason that XML is a standard data model to share /
distribute data

 » Efficient parsers are available to parse the data and extract out only desired data

 » We can add new data to the XML file by carefully appending data We would not have
to re-query the database

However, querying the data could be difficult

Solutions to Chapter 11 | System Design and Memory Limits

Cracking the Coding Interview | Concepts and Algorithms1 9 9

11 2 How would you design the data structures for a very large social network (Facebook,
LinkedIn, etc)? Describe how you would design an algorithm to show the connec-
tion, or path, between two people (e g , Me -> Bob -> Susan -> Jason -> You)

 pg 72

SOLUTION

Approach:

Forget that we’re dealing with millions of users at first Design this for the simple case

We can construct a graph by assuming every person is a node and if there is an edge be-
tween two nodes, then the two people are friends with each other

class Person {
 Person[] friends;
 // Other info
}

If I want to find the connection between two people, I would start with one person and do a
simple breadth first search

But... oh no! Millions of users!

When we deal with a service the size of Orkut or Facebook, we cannot possibly keep all of our
data on one machine That means that our simple Person data structure from above doesn’t
quite work—our friends may not live on the same machine as us Instead, we can replace our
list of friends with a list of their IDs, and traverse as follows:

1 For each friend ID: int machine_index = lookupMachineForUserID(id);

2 Go to machine machine_index

3 Person friend = lookupFriend(machine_index);

There are more optimizations and follow up questions here than we could possibly discuss,
but here are just a few thoughts

Optimization: Reduce Machine Jumps

Jumping from one machine to another is expensive Instead of randomly jumping from ma-
chine to machine with each friend, try to batch these jumps—e g , if 5 of my friends live on
one machine, I should look them up all at once

Optimization: Smart Division of People and Machines

People are much more likely to be friends with people who live in the same country as them
Rather than randomly dividing people up across machines, try to divvy them up by country,
city, state, etc This will reduce the number of jumps

Question: Breadth First Search usually requires “marking” a node as visited. How do you do that in

Solutions to Chapter 11 | System Design and Memory Limits

2 0 0CareerCup com

this case?

Usually, in BFS, we mark a node as visited by setting a flag visited in its node class Here, we
don’t want to do that (there could be multiple searches going on at the same time, so it’s bad
to just edit our data) In this case, we could mimic the marking of nodes with a hash table to
lookup a node id and whether or not it’s been visited

Other Follow-Up Questions:

 » In the real world, servers fail How does this affect you?

 » How could you take advantage of caching?

 » Do you search until the end of the graph (infinite)? How do you decide when to give up?

 » In real life, some people have more friends of friends than others, and are therefore
more likely to make a path between you and someone else How could you use this data
to pick where you start traversing?

The following code demonstrates our algorithm:
1 public class Server {
2 ArrayList<Machine> machines = new ArrayList<Machine>();
3 }
4
5 public class Machine {
6 public ArrayList<Person> persons = new ArrayList<Person>();
7 public int machineID;
8 }
9
10 public class Person {
11 private ArrayList<Integer> friends;
12 private int ID;
13 private int machineID;
14 private String info;
15 private Server server = new Server();
16
17 public String getInfo() { return info; }
18 public void setInfo(String info) {
19 this.info = info;
20 }
21
22 public int[] getFriends() {
23 int[] temp = new int[friends.size()];
24 for (int i = 0; i < temp.length; i++) {
25 temp[i] = friends.get(i);
26 }
27 return temp;
28 }

Solutions to Chapter 11 | System Design and Memory Limits

Cracking the Coding Interview | Concepts and Algorithms2 0 1

29 public int getID() { return ID; }
30 public int getMachineID() { return machineID; }
31 public void addFriend(int id) { friends.add(id); }
32
33 // Look up a person given their ID and Machine ID
34 public Person lookUpFriend(int machineID, int ID) {
35 for (Machine m : server.machines) {
36 if (m.machineID == machineID) {
37 for (Person p : m.persons) {
38 if (p.ID == ID){
39 return p;
40 }
41 }
42 }
43 }
44 return null;
45 }
46
47 // Look up a machine given the machine ID
48 public Machine lookUpMachine(int machineID) {
49 for (Machine m:server.machines) {
50 if (m.machineID == machineID)
51 return m;
52 }
53 return null;
54 }
55
56 public Person(int iD, int machineID) {
57 ID = iD;
58 this.machineID = machineID;
59 }
60 }

Solutions to Chapter 11 | System Design and Memory Limits

2 0 2CareerCup com

11 3 Given an input file with four billion integers, provide an algorithm to generate an
integer which is not contained in the file Assume you have 1 GB of memory

FOLLOW UP
What if you have only 10 MB of memory?

 pg 72

SOLUTION

There are a total of 2^32, or 4 billion, distinct integers possible We have 1 GB of memory, or
8 billion bits

Thus, with 8 billion bits, we can map all possible integers to a distinct bit with the available
memory The logic is as follows:

1 Create a bit vector (BV) of size 4 billion

2 Initialize BV with all 0’s

3 Scan all numbers (num) from the file and write BV[num] = 1;

4 Now scan again BV from 0th index

5 Return the first index which has 0 value
1 byte[] bitfield = new byte [0xFFFFFFF/8];
2 void findOpenNumber2() throws FileNotFoundException {
3 Scanner in = new Scanner(new FileReader(“input_file_q11_4.txt”));
4 while (in.hasNextInt()) {
5 int n = in.nextInt ();
6 /* Finds the corresponding number in the bitfield by using the
7 * OR operator to set the nth bit of a byte (e.g.. 10 would
8 * correspond to the 2nd bit of index 2 in the byte array). */
9 bitfield [n / 8] |= 1 << (n % 8);
10 }
11
12 for (int i = 0 ; i < bitfield.length; i++) {
13 for (int j = 0; j < 8; j++) {
14 /* Retrieves the individual bits of each byte. When 0 bit
15 * is found, finds the corresponding value. */
16 if ((bitfield[i] & (1 << j)) == 0) {
17 System.out.println (i * 8 + j);
18 return;
19 }
20 }
21 }
22 }

Solutions to Chapter 11 | System Design and Memory Limits

Cracking the Coding Interview | Concepts and Algorithms2 0 3

Follow Up: What if we have only 10 MB memory?

It’s possible to find a missing integer with just two passes of the data set We can divide up
the integers into blocks of some size (we’ll discuss how to decide on a size later) Let’s just as-
sume that we divide up the integers into blocks of 1000 So, block 0 represents the numbers
0 through 999, block 1 represents blocks 1000 - 1999, etc Since the range of ints is finite, we
know that the number of blocks needed is finite

In the first pass, we count how many ints are in each block That is, if we see 552, we know
that that is in block 0, we increment counter[0] If we see 1425, we know that that is in block
1, so we increment counter[1]

At the end of the first pass, we’ll be able to quickly spot a block that is missing a number If
our block size is 1000, then any block which has fewer than 1000 numbers must be missing a
number Pick any one of those blocks

In the second pass, we’ll actually look for which number is missing We can do this by creat-
ing a simple bit vector of size 1000 We iterate through the file, and for each number that
should be in our block, we set the appropriate bit in the bit vector By the end, we’ll know
which number (or numbers) is missing

Now we just have to decide what the block size is

A quick answer is 2^20 values per block We will need an array with 2^12 block counters and
a bit vector in 2^17 bytes Both of these can comfortably fit in 10*2^20 bytes

What’s the smallest footprint? When the array of block counters occupies the same memory
as the bit vector Let N = 2^32

counters (bytes): blocks * 4
bit vector (bytes): (N / blocks) / 8

blocks * 4 = (N / blocks) / 8
blocks^2 = N / 32

blocks = sqrt(N/2)/4

It’s possible to find a missing integer with just under 65KB (or, more exactly, sqrt(2)*2^15
bytes)
1 int bitsize = 1048576; // 2^20 bits (2^17 bytes)
2 int blockNum = 4096; // 2^12
3 byte[] bitfield = new byte[bitsize/8];
4 int[] blocks = new int[blockNum];
5
6 void findOpenNumber() throws FileNotFoundException {
7 int starting = -1;
8 Scanner in = new Scanner (new FileReader (“input_file_q11_4.txt”));

Solutions to Chapter 11 | System Design and Memory Limits

2 0 4CareerCup com

9 while (in.hasNextInt()) {
10 int n = in.nextInt();
11 blocks[n / (bitfield.length * 8)]++;
12 }
13
14 for (int i = 0; i < blocks.length; i++) {
15 if (blocks[i] < bitfield.length * 8){
16 /* if value < 2^20, then at least 1 number is missing in
17 * that section. */
18 starting = i * bitfield.length * 8;
19 break;
20 }
21 }
22
23 in = new Scanner(new FileReader(“input_file_q11_4.txt”));
24 while (in.hasNextInt()) {
25 int n = in.nextInt();
26 /* If the number is inside the block that’s missing numbers,
27 * we record it */
28 if(n >= starting && n < starting + bitfield.length * 8){
29 bitfield [(n-starting) / 8] |= 1 << ((n - starting) % 8);
30 }
31 }
32
33 for (int i = 0 ; i < bitfield.length; i++) {
34 for (int j = 0; j < 8; j++) {
35 /* Retrieves the individual bits of each byte. When 0 bit
36 * is found, finds the corresponding value. */
37 if ((bitfield[i] & (1 << j)) == 0) {
38 System.out.println(i * 8 + j + starting);
39 return;
40 }
41 }
42 }
43 }

Solutions to Chapter 11 | System Design and Memory Limits

Cracking the Coding Interview | Concepts and Algorithms2 0 5

11 4 You have an array with all the numbers from 1 to N, where N is at most 32,000 The
array may have duplicate entries and you do not know what N is With only 4KB of
memory available, how would you print all duplicate elements in the array?

 pg 72

SOLUTION

We have 4KB of memory which means we can address up to 8 * 4 * (2^10) bits Note that 32*
(2^10) bits is greater than 32000 We can create a bit vector with 32000 bits, where each bit
represents one integer

NOTE: While this isn’t an especially difficult problem, it’s important to implement this cleanly
We will define our own bit vector class to hold a large bit vector
1 public static void checkDuplicates(int[] array) {
2 BitSet bs = new BitSet(32000);
3 for (int i = 0; i < array.length; i++) {
4 int num = array[i];
5 int num0 = num - 1; // bitset starts at 0, numbers start at 1
6 if (bs.get(num0)) {
7 System.out.println(num);
8 } else {
9 bs.set(num0);
10 }
11 }
12 }
13
14 class BitSet {
15 int[] bitset;
16
17 public BitSet(int size) {
18 bitset = new int[size >> 5]; // divide by 32
19 }
20
21 boolean get(int pos) {
22 int wordNumber = (pos >> 5); // divide by 32
23 int bitNumber = (pos & 0x1F); // mod 32
24 return (bitset[wordNumber] & (1 << bitNumber)) != 0;
25 }
26
27 void set(int pos) {
28 int wordNumber = (pos >> 5); // divide by 32
29 int bitNumber = (pos & 0x1F); // mod 32
30 bitset[wordNumber] |= 1 << bitNumber;
31 }
32 }

Solutions to Chapter 11 | System Design and Memory Limits

2 0 6CareerCup com

11 5 If you were designing a web crawler, how would you avoid getting into infinite loops?

 pg 72

SOLUTION

First, how does the crawler get into a loop? The answer is very simple: when we re-parse an
already parsed page This would mean that we revisit all the links found in that page, and this
would continue in a circular fashion

Be careful about what the interviewer considers the “same” page Is it URL or content? One
could easily get redirected to a previously crawled page

So how do we stop visiting an already visited page? The web is a graph-based structure,
and we commonly use DFS (depth first search) and BFS (breadth first search) for traversing
graphs We can mark already visited pages the same way that we would in a BFS/DFS

We can easily prove that this algorithm will terminate in any case We know that each step
of the algorithm will parse only new pages, not already visited pages So, if we assume that
we have N number of unvisited pages, then at every step we are reducing N (N-1) by 1 That
proves that our algorithm will continue until they are only N steps

SUGGESTIONS AND OBSERVATIONS

 » This question has a lot of ambiguity Ask clarifying questions!

 » Be prepared to answer questions about coverage

 » What kind of pages will you hit with a DFS versus a BFS?

 » What will you do when your crawler runs into a honey pot that generates an infinite
subgraph for you to wander about?

Solutions to Chapter 11 | System Design and Memory Limits

Cracking the Coding Interview | Concepts and Algorithms2 0 7

11 6 You have a billion urls, where each is a huge page How do you detect the duplicate
documents?

 pg 72

SOLUTION

Observations:

1 Pages are huge, so bringing all of them in memory is a costly affair We need a shorter
representation of pages in memory A hash is an obvious choice for this

2 Billions of urls exist so we don’t want to compare every page with every other page
(that would be O(n^2))

Based on the above two observations we can derive an algorithm which is as follows:

1 Iterate through the pages and compute the hash table of each one

2 Check if the hash value is in the hash table If it is, throw out the url as a duplicate If it
is not, then keep the url and insert it in into the hash table

This algorithm will provide us a list of unique urls But wait, can this fit on one computer?

 » How much space does each page take up in the hash table?

 » Each page hashes to a four byte value

 » Each url is an average of 30 characters, so that’s another 30 bytes at least

 » Each url takes up roughly 34 bytes

 » 34 bytes * 1 billion = 31 6 gigabytes We’re going to have trouble holding that all in
memory!

What do we do?

 » We could split this up into files We’ll have to deal with the file loading / unloading—ugh

 » We could hash to disk Size wouldn’t be a problem, but access time might A hash table
on disk would require a random access read for each check and write to store a viewed
url This could take msecs waiting for seek and rotational latencies Elevator algorithms
could elimate random bouncing from track to track

 » Or, we could split this up across machines, and deal with network latency Let’s go with
this solution, and assume we have n machines

 » First, we hash the document to get a hash value v

 » v%n tells us which machine this document’s hash table can be found on

 » v / n is the value in the hash table that is located on its machine

Solutions to Chapter 11 | System Design and Memory Limits

2 0 8CareerCup com

11 7 You have to design a database that can store terabytes of data It should support ef-
ficient range queries How would you do it?

 pg 72

SOLUTION

Construct an index for each field that requires range queries Use a B+ tree to implement
the index A B+ tree organizes sorted data for efficient insertion, retrieval and removal of
records Each record is identified by a key (for this problem, it is the field value) Since it is a
dynamic, multilevel index, finding the beginning of the range depends only on the height
of the tree, which is usually quite small Record references are stored in the leaves, sorted by
the key Additional records can be found by following a next block reference Records will be
sequentially available until the key value reaches the maximum value specified in the query
Thus, runtimes will be dominated by the number of elements in a range

Avoid using trees that store data at interior nodes, as traversing the tree will be expensive
since it won’t be resident in memory

Solutions to Chapter 12 | Testing

Cracking the Coding Interview | Concepts and Algorithms2 0 9

12 1 Find the mistake(s) in the following code:
1 unsigned int i;
2 for (i = 100; i <= 0; --i)
3 printf(“%d\n”, i);

 pg 70

SOLUTION

The printf will never get executed, as “i” is initialized to 100, so condition check “i <= 0” will fail

Suppose the code is changed to “i >= 0 ” Then, it will become an infinite loop, because “i” is an
unsigned int which can’t be negative

The correct code to print all numbers from 100 to 1, is “i > 0”
1 unsigned int i;
2 for (i = 100; i > 0; --i)
3 printf(“%d\n”, i);

One additional correction is to use %u in place of %d, as we are printing unsigned int
1 unsigned int i;
2 for (i = 100; i > 0; --i)
3 printf(“%u\n”, i);

Solutions to Chapter 12 | Testing

2 1 0CareerCup com

12 2 You are given the source to an application which crashes when it is run After running
it ten times in a debugger, you find it never crashes in the same place The application
is single threaded, and uses only the C standard library What programming errors
could be causing this crash? How would you test each one?

 pg 70

SOLUTION

The question largely depends on the type of application being diagnosed However, we can
give some general causes of random crashes

1 Random variable: The application uses some random number or variable component
which may not be fixed for every execution of the program Examples include: user
input, a random number generated by the program, or the time of day

2 Memory Leak: The program may have run out of memory Other culprits are totally
random for each run since it depends on the number of processes running at that
particular time This also includes heap overflow or corruption of data on the stack

It is also possible that the program depends on another application / external module that
could lead to the crash If our application, for example, depends on some system attributes
and they are modified by another program, then this interference may lead to a crash Pro-
grams which interact with hardware are more prone to these errors

In an interview, we should ask about which kind of application is being run This information
may give you some idea about the kind of error the interviewer is looking for For example,
a web server is more prone to memory leakage, whereas a program that runs close to the
system level is more prone to crashes due to system dependencies

Solutions to Chapter 12 | Testing

Cracking the Coding Interview | Concepts and Algorithms2 1 1

12 3 We have the following method used in a chess game: boolean canMoveTo(int x, int y)
x and y are the coordinates of the chess board and it returns whether or not the piece
can move to that position Explain how you would test this method

 pg 70

SOLUTION

There are two primary types of testing we should do:

Validation of input/output:

We should validate both the input and output to make sure that each are valid This might
entail:

1 Checking whether input is within the board limit

 » Attempt to pass in negative numbers

 » Attempt to pass in x which is larger than the width

 » Attempt to pass in y which is larger than the width

Depending on the implementation, these should either return false or throw an excep-
tion

2 Checking if output is within the valid set of return values (Not an issue in this case,
since there are no “invalid” boolean values)

Functional testing:

Ideally, we would like to test every possible board, but this is far too big We can do a reason-
able coverage of boards however There are 6 pieces in chess, so we need to do something
like this:
1 foreach piece a:
2 for each other type of piece b (6 types + empty space)
3 foreach direction d
4 Create a board with piece a.
5 Place piece b in direction d.
6 Try to move – check return value.

Solutions to Chapter 12 | Testing

2 1 2CareerCup com

12 4 How would you load test a webpage without using any test tools?

 pg 70

SOLUTION

Load testing helps to identify a web application’s maximum operating capacity, as well as
any bottlenecks that may interfere with its performance Similarly, it can check how an ap-
plication responds to variations in load

To perform load testing, we must first identify the performance-critical scenarios and the
metrics which fulfill our performance objectives Typical criteria include:

 » response time

 » throughput

 » resource utilization

 » maximum load that the system can bear

Then, we design tests to simulate the load, taking care to measure each of these criteria

In the absence of formal testing tools, we can basically create our own For example, we
could simulate concurrent users by creating thousands of virtual users We would write a
multi-threaded program with thousands of threads, where each thread acts as a real-world
user loading the page For each user, we would programmatically measure response time,
data I/O, etc

We would then analyze the results based on the data gathered during the tests and compare
it with the accepted values

Solutions to Chapter 12 | Testing

Cracking the Coding Interview | Concepts and Algorithms2 1 3

12 5 How would you test a pen?

 pg 70

SOLUTION

This problem is largely about understand the constraints: what exactly is the pen? You
should ask a lot of questions to understand what exactly you are trying to test To illustrate
the technique in this problem, let us guide you through a mock-conversation

Interviewer: How would you test a pen?

Candidate: Let me find out a bit about the pen Who is going to use the pen?

Interviewer: Probably children

Candidate: Ok, that’s interesting What will they be doing with it? Will they be writing, draw-
ing, or doing something else with it?

Interviewer: Drawing

Candidate: Ok, great On what? Paper? Clothing? Walls?

Interviewer: On clothing

Candidate: Great What kind of tip does the pen have? Felt? Ball point? Is it intended to
wash off, or is it intended to be permanent?

Interviewer: It’s intended to wash off

… many questions later

Candidate: Ok, so as I understand it, we have a pen that is being targeted at 5—10 year olds
The pen has a felt tip and comes in red, green, blue and black It’s intended to wash off cloth-
ing Is that correct?

…

The candidate now has a problem that is significantly different from what it initially seemed
to be Thus, the candidate might now want to test:

1 Does the pen wash off with warm water, cold water, and luke warm water?

2 Does the pen wash off after staying on the clothing for several weeks? What happens if
you wash the clothing while the pen is still wet?

3 Is the pen safe (e g —non-toxic) for children?

and so on

Solutions to Chapter 12 | Testing

2 1 4CareerCup com

12 6 How would you test an ATM in a distributed banking system?

 pg 70

SOLUTION

The first thing to do on this question is to clarify assumptions Ask the following questions:

 » Who is going to use the ATM? Answers might be “anyone,” or it might be “blind people”
- or any number of other answers

 » What are they going to use it for? Answers might be “withdrawing money,” “transferring
money,” “checking their balance,” or many other answers

 » What tools do we have to test? Do we have access to the code, or just the ATM machine?

Remember: a good tester makes sure she knows what she’s testing!

Here are a few test cases for how to test just the withdrawing functionality:

 » Withdrawing money less than the account balance

 » Withdrawing money greater than the account balance

 » Withdrawing money equal to the account balance

 » Withdrawing money from an ATM and from the internet at the same time

 » Withdrawing money when the connection to the bank’s network is lost

 » Withdrawing money from multiple ATMs simultaneously

Solutions to Chapter 13 | C++

Cracking the Coding Interview | Knowledge Based2 1 5

13 1 Write a method to print the last K lines of an input file using C++

 pg 76

SOLUTION

One brute force way could be to count the number of lines (N) and then print from N-10 to
Nth line But, this requires two reads of the file – potentially very costly if the file is large

We need a solution which allows us to read just once and be able to print the last K lines We
can create extra space for K lines and then store each set of K lines in the array So, initially,
our array has lines 0 through 9, then 1 through 10, then 2 through 11, etc (if K = 10) Each
time that we read a new line, we purge the oldest line from the array Instead of shifting the
array each time (very inefficient), we will use a circular array This will allow us to always find
the oldest element in O(1) time

Example of inserting elements into a circular array:
step 1 (initially): array = {a, b, c, d, e, f}. p = 0
step 2 (insert g): array = {g, b, c, d, e, f}. p = 1
step 3 (insert h): array = {g, h, c, d, e, f}. p = 2
step 4 (insert i): array = {g, h, i, d, e, f}. p = 3

Code:
1 string L[K];
2 int lines = 0;
3 while (file.good()) {
4 getline(file, L[lines % K]); // read file line by line
5 ++lines;
6 }
7 // if less than K lines were read, print them all
8 int start, count;
9 if (lines < K) {
10 start = 0;
11 count = lines;
12 } else {
13 start = lines % K;
14 count = K;
15 }
16 for (int i = 0; i < count; ++i) {
17 cout << L[(start + i) % K] << endl;
18 }

OBSERVATIONS AND SUGGESTIONS:

 » Note, if you do printf(L[(index + i) % K]) when there are %’s in the string, bad things will
happen

Solutions to Chapter 13 | C++

2 1 6CareerCup com

13 2 Compare and contrast a hash table vs an STL map How is a hash table implemented?
If the number of inputs is small, what data structure options can be used instead of
a hash table?

 pg 76

SOLUTION

Compare and contrast Hash Table vs. STL map

In a hash table, a value is stored by applying hash function on a key Thus, values are not
stored in a hash table in sorted order Additionally, since hash tables use the key to find the
index that will store the value, an insert/lookup can be done in amortised O(1) time (assum-
ing only a few collisions in the hashtable) One must also handle potential collisions in a
hashtable

In an STL map, insertion of key/value pair is in sorted order of key It uses a tree to store
values, which is why an O(log N) insert/lookup is required There is also no need to handle
collisions An STL map works well for things like:

 » find min element

 » find max element

 » print elements in sorted order

 » find the exact element or, if the element is not found, find the next smallest number

How is a hash table implemented?

1 A good hash function is required (e g : operation % prime number) to ensure that the
hash values are uniformly distributed

2 A collision resolving method is also needed: chaining (good for dense table entries),
probing (good for sparse table entries), etc

3 Implement methods to dynamically increase or decrease the hash table size on a given
criterion For example, when the [number of elements] by [table size] ratio is greater
than the fixed threshold, increase the hash table size by creating a new hash table and
transfer the entries from the old table to the new table by computing the index using
new hash function

What can be used instead of a hash table, if the number of inputs is small?

You can use an STL map Although this takes O(log n) time, since the number of inputs is
small, this time is negligible

Solutions to Chapter 13 | C++

Cracking the Coding Interview | Knowledge Based2 1 7

13 3 How do virtual functions work in C++?

 pg 76

SOLUTION

A virtual function depends on a “vtable” or “Virtual Table” If any function of a class is declared
as virtual, a v-table is constructed which stores addresses of the virtual functions of this class
The compiler also adds a hidden vptr variable in all such classes which points to the vtable of
that class If a virtual function is not overridden in the derived class, the vtable of the derived
class stores the address of the function in his parent class The v-table is used to resolve the
address of the function, for whenever the virtual function is called Dynamic binding in C++
is therefore performed through the vtable mechanism

Thus, when we assign the derived class object to the base class pointer, the vptr points to the
vtable of the derived class This assignment ensures that the most derived virtual function
gets called
1 class Shape {
2 public:
3 int edge_length;
4 virtual int circumference () {
5 cout << “Circumference of Base Class\n”;
6 return 0;
7 }
8 };
9 class Triangle: public Shape {
10 public:
11 int circumference () {
12 cout<< “Circumference of Triangle Class\n”;
13 return 3 * edge_length;
14 }
15 };
16 void main() {
17 Shape * x = new Shape();
18 x->circumference(); // prints “Circumference of Base Class”
19 Shape *y = new Triangle();
20 y->circumference(); // prints “Circumference of Triangle Class”
21 }

In the above example, circumference is a virtual function in shape class, so it becomes vir-
tual in each of the derived classes (triangle, rectangle) C++ non-virtual function calls are
resolved at compile time with static binding, while virtual function calls are resolved at run
time with dynamic binding

Solutions to Chapter 13 | C++

2 1 8CareerCup com

13 4 What is the difference between deep copy and shallow copy? Explain how you would
use each

 pg 76

SOLUTION
1 struct Test {
2 char * ptr;
3 };
4 void shallow_copy(Test & src, Test & dest) {
5 dest.ptr = src.ptr;
6 }
7 void deep_copy(Test & src, Test & dest) {
8 dest.ptr = malloc(strlen(src.ptr) + 1);
9 memcpy(dest.ptr, src.ptr);
10 }

Note that shallow_copy may cause a lot of programming run-time errors, especially with the
creation and deletion of objects Shallow copy should be used very carefully and only when
a programmer really understands what he wants to do In most cases shallow copy is used
when there is a need to pass information about a complex structure without actual duplica-
tion of data (e g , call by reference) One must also be careful with destruction of shallow
copy

In real life, shallow copy is rarely used There is an important programming concept called
“smart pointer” that, in some sense, is an enhancement of the shallow copy concept

Deep copy should be used in most cases, especially when the size of the copied structure is
small

Solutions to Chapter 13 | C++

Cracking the Coding Interview | Knowledge Based2 1 9

13 5 What is the significance of the keyword “volatile” in C?

 pg 76

SOLUTION

Volatile informs the compiler that the value of the variable can change from the outside,
without any update done by the code

Declaring a simple volatile variable:

volatile int x;
int volatile x;

Declaring a pointer variable for a volatile memory (only the pointer address is volatile):

volatile int * x;
int volatile * x;

Declaring a volatile pointer variable for a non-volatile memory (only memory contained is
volatile):

int * volatile x;

Declaring a volatile variable pointer for a volatile memory (both pointer address and memo-
ry contained are volatile):

volatile int * volatile x;
int volatile * volatile x;

Volatile variables are not optimized, but this can actually be useful Imagine this function:
1 int opt = 1;
2 void Fn(void) {
3 start:
4 if (opt == 1) goto start;
5 else break;
6 }

At first glance, our code appears to loop infinitely The compiler will try to optimize it to:
1 void Fn(void) {
2 start:
3 int opt = 1;
4 if (true)
5 goto start;
6 }

This becomes an infinite loop However, an external program might write ‘0’ to the location
of variable opt Volatile variables are also useful when multi-threaded programs have global
variables and any thread can modify these shared variables Of course, we don’t want opti-
mization on them

Solutions to Chapter 13 | C++

2 2 0CareerCup com

13 6 What is name hiding in C++?

 pg 76

SOLUTION

Let us explain through an example In C++, when you have a class with an overloaded meth-
od, and you then extend and override that method, you must override all of the overloaded
methods

For example:
1 class FirstClass {
2 public:
3 virtual void MethodA (int);
4 virtual void MethodA (int, int);
5 };
6 void FirstClass::MethodA (int i) {
7 std::cout << “ONE!!\n”;
8 }
9 void FirstClass::MethodA (int i, int j) {
10 std::cout << “TWO!!\n”;
11 }

This is a simple class with two methods (or one overloaded method) If you want to override
the one-parameter version, you can do the following:
1 class SecondClass : public FirstClass {
2 public:
3 void MethodA (int);
4 };
5 void SecondClass::MethodA (int i) {
6 std::cout << “THREE!!\n”;
7 }
8 void main () {
9 SecondClass a;
10 a.MethodA (1);
11 a.MethodA (1, 1);
12 }

However, the second call won’t work, since the two-parameter MethodA is not visible That
is name hiding

Solutions to Chapter 13 | C++

Cracking the Coding Interview | Knowledge Based2 2 1

13 7 Why does a destructor in base class need to be declared virtual?

 pg 76

SOLUTION

Calling a method with an object pointer always invokes:

 » the most derived class function, if a method is virtual

 » the function implementation corresponding to the object pointer type (used to call the
method), if a method is non-virtual

A virtual destructor works in the same way A destructor gets called when an object goes out
of scope or when we call delete on an object pointer

When any derived class object goes out of scope, the destructor of that derived class gets
called first It then calls its parent class destructor so memory allocated to the object is prop-
erly released

But, if we call delete on a base pointer which points to a derived class object, the base class
destructor gets called first (for non-virtual function) For example:
1 class Base {
2 public:
3 Base() { cout << “Base Constructor “ << endl; }
4 ~Base() { cout << “Base Destructor “ << endl; } /* see below */
5 };
6 class Derived: public Base {
7 public:
8 Derived() { cout << ”Derived Constructor “ << endl; }
9 ~Derived() { cout << ”Derived Destructor “ << endl; }
10 };
11 void main() {
12 Base *p = new Derived();
13 delete p;
14 }

Output:

Base Constructor
Derived Constructor
Base Destructor

If we declare the base class destructor as virtual, this makes all the derived class destructors
virtual as well

If we replace the above destructor with:
1 virtual ~Base() {
2 cout << “Base Destructor” << endl;
3 }

Solutions to Chapter 13 | C++

2 2 2CareerCup com

Then the output becomes:

Base Constructor
Derived Constructor
Derived Destructor
Base Destructor

So we should use virtual destructors if we call delete on a base class pointer which points to
a derived class

Solutions to Chapter 13 | C++

Cracking the Coding Interview | Knowledge Based2 2 3

13 8 Write a method that takes a pointer to a Node structure as a parameter and returns
a complete copy of the passed-in data structure The Node structure contains two
pointers to other Node structures

 pg 76

SOLUTION

The algorithm will maintain a mapping from a node address in the original structure to the
corresponding node in the new structure This mapping will allow us to discover previously
copied nodes during a traditional depth first traversal of the structure (Traversals often mark
visited nodes--the mark can take many forms and does not necessarily need to be stored in
the node) Thus, we have a simple recursive algorithm:
1 typedef map<Node*, Node*> NodeMap;
2
3 Node * copy_recursive(Node * cur, NodeMap & nodeMap) {
4 if(cur == NULL) {
5 return NULL;
6 }
7 NodeMap::iterator i = nodeMap.find(cur);
8 if (i != nodeMap.end()) {
9 // we’ve been here before, return the copy
10 return i->second;
11 }
12 Node * node = new Node;
13 nodeMap[cur] = node; // map current node before traversing links
14 node->ptr1 = copy_recursive(cur->ptr1, nodeMap);
15 node->ptr2 = copy_recursive(cur->ptr2, nodeMap);
16 return node;
17 }
18 Node * copy_structure(Node * root) {
19 NodeMap nodeMap; // we will need an empty map
20 return copy_recursive(root, nodeMap);
21 }
22

Solutions to Chapter 13 | C++

2 2 4CareerCup com

13 9 Write a smart pointer (smart_ptr) class

 pg 76

SOLUTION

Smart_ptr is the same as a normal pointer, but it provides safety via automatic memory It
avoids dangling pointers, memory leaks, allocation failures etc The smart pointer must main-
tain a single reference count for all instances
1 template <class T> class SmartPointer {
2 public:
3 SmartPointer(T * ptr) {
4 ref = ptr;
5 ref_count = (unsigned*)malloc(sizeof(unsigned));
6 *ref_count = 1;
7 }
8 SmartPointer(SmartPointer<T> & sptr) {
9 ref = sptr.ref;
10 ref_count = sptr.ref_count;
11 ++*ref_count;
12 }
13 SmartPointer<T> & operator=(SmartPointer<T> & sptr) {
14 if (this != &sptr) {
15 ref = sptr.ref;
16 ref_count = sptr.ref_count;
17 ++*ref_count;
18 }
19 return *this;
20 }
21 ~SmartPointer() {
22 --*ref_count;
23 if (*ref_count == 0) {
24 delete ref;
25 free(ref_count);
26 ref = NULL;
27 ref_count = NULL;
28 }
29 }
30 T getValue() { return *ref; }
31 protected:
32 T * ref;
33 unsigned * ref_count;
34 };

Solutions to Chapter 14 | Java

Cracking the Coding Interview | Knowledge Based2 2 5

14 1 In terms of inheritance, what is the effect of keeping a constructor private?

 pg 78

SOLUTION

Declaring the constructor private will ensure that no one outside of the class can directly in-
stantiate the class In this case, the only way to create an instance of the class is by providing
a static public method, as is done when using the Factory Method Pattern

Additionally, because the constructor is private, the class also cannot be inherited

Solutions to Chapter 14 | Java

2 2 6CareerCup com

14 2 In Java, does the finally block gets executed if we insert a return statement inside the
try block of a try-catch-finally?

 pg 78

SOLUTION

Yes, it will get executed

The finally block gets executed when the try block exists However, even when we attempt
to exit within the try block (normal exit, return, continue, break or any exception), the finally
block will still be executed

Note: There are some cases in which the finally block will not get executed: if the
virtual machine exits in between try/catch block execution, or the thread which
is executing try/catch block gets killed.

Solutions to Chapter 14 | Java

Cracking the Coding Interview | Knowledge Based2 2 7

14 3 What is the difference between final, finally, and finalize?

 pg 78

SOLUTIONS

Final

When applied to a variable (primitive): The value of the variable cannot change

When applied to a variable (reference): The reference variable cannot point to any other ob-
ject on the heap

When applied to a method: The method cannot be overridden

When applied to a class: The class cannot be subclassed

Finally

There is an optional finally block after the try block or after the catch block Statements in the
finally block will always be executed (except if JVM exits from the try block) The finally block
is used to write the clean up code

Finalize

This is the method that the JVM runs before running the garbage collector

Solutions to Chapter 14 | Java

2 2 8CareerCup com

14 4 Explain the difference between templates in C++ and generics in Java

 pg 78

SOLUTION

C++ Templates Java Generics

Classes and functions can be templated Classes and methods can be genericized

Parameters can be any type or integral
value

Parameters can only be reference types
(not primitive types)

Separate copies of the class or function are
likely to be generated for each type param-
eter when compiled

One version of the class or function is com-
piled, works for all type parameters

Objects of a class with different type pa-
rameters are different types at run time

Type parameters are erased when com-
piled; objects of a class with different type
parameters are the same type at run time

Implementation source code of the tem-
plated class or function must be included
in order to use it (declaration insufficient)

Signature of the class or function from a
compiled class file is sufficient to use it

Templates can be specialized - a separate
implementation could be provided for a
particular template parameter

Generics cannot be specialized

Does not support wildcards Instead, re-
turn types are often available as nested
typedefs

Supports wildcard as type parameter if it is
only used once

Does not directly support bounding of
type parameters, but metaprogramming
provides this

Supports bounding of type parameters
with "extends" and "super" for upper and
lower bounds, respectively; allows enforce-
ment of relationships between type param-
eters

Allows instantiation of class of type param-
eter type

Does not allow instantiation of class of type
parameter type

Type parameter of templated class can be
used for static methods and variables

Type parameter of templated class cannot
be used for static methods and variables

Static variables are not shared between
classes of different type parameters

Static variables are shared between instanc-
es of a classes of different type parameters

From http://en.wikipedia.org/wiki/Comparison_of_Java_and_C%2B%2B#Templates_vs._Generics

http://en.wikipedia.org/wiki/Comparison_of_Java_and_C%2B%2B#Templates_vs._Generics

Solutions to Chapter 14 | Java

Cracking the Coding Interview | Knowledge Based2 2 9

14 5 Explain what object reflection is in Java and why it is useful

 pg 78

SOLUTION

Object Reflection is a feature in Java which provides a way to get reflective information about
Java classes and objects, such as:

1 Getting information about methods and fields present inside the class at run time

2 Creating a new instance of a class

3 Getting and setting the object fields directly by getting field reference, regardless of
what the access modifier is

1 import java.lang.reflect.*;
2
3 public class Sample {
4 public static void main(String args[]) {
5 try {
6 Class c = Class.forName(“java.sql.Connection”);
7 Method m[] = c.getDeclaredMethods();
8 for (int i = 0; i < 3; i++) {
9 System.out.println(m[i].toString());
10 }
11 } catch (Throwable e) {
12 System.err.println(e);
13 }
14 }
15 }

This code’s output is the names of the first 3 methods inside the “java sql Connection” class
(with fully qualified parameters)

Why it is useful:

1 Helps in observing or manipulating the runtime behavior of applications

2 Useful while debugging and testing applications, as it allows direct access to methods,
constructors, fields, etc

Solutions to Chapter 14 | Java

2 3 0CareerCup com

14 6 Suppose you are using a map in your program, how would you count the number of
times the program calls the put() and get() functions?

 pg 78

SOLUTION

One simple solution is to put count variables for get() and put() methods and, whenever they
are called, increment the count We can also achieve this by extending the existing library
map and overriding the get() and put() functions

At first glance, this seems to work However, what if we created multiple instances of the
map? How would you sum up the total count for each map object?

The simplest solution for this is to keep the count variables static We know static variables
have only one copy for all objects of the class so the total count would be reflected in count
variables

Solutions to Chapter 15 | Databases

Cracking the Coding Interview | Knowledge Based2 3 1

15 1 Write a method to find the number of employees in each department

 pg 80

SOLUTION

This problem uses a straight-forward join of Departments and Employees Note that we use a
left join instead of an inner join because we want to include Departments with 0 employees

1 select Dept_Name, Departments.Dept_ID, count(*) as ‘num_employees’
2 from Departments
3 left join Employees
4 on Employees.Dept_ID = Departments.Dept_ID
5 group by Departments.Dept_ID, Dept_Name

Solutions to Chapter 15 | Databases

2 3 2CareerCup com

15 2 What are the different types of joins? Please explain how they differ and why certain
types are better in certain situations

 pg 80

SOLUTION

JOIN is used to combine the results of two tables To perform a join, each of the tables must
have at least one field which will be used to find matching records from the other table The
join type defines which records will go into the result set

Let’s take for example two tables: one table lists “regular” beverages, and another lists the
calorie-free beverages Each table has two fields: the beverage name and its product code
The “code” field will be used to perform the record matching

Regular Beverages:

Name Code

Budweiser BUDWEISER

Coca-Cola COCACOLA

Pepsi PEPSI

Calorie-Free Beverages:

Code Name

COCACOLA Diet Coca-Cola

FRESCA Fresca

PEPSI Diet Pepsi

PEPSI Pepsi Light

Water Purified Water

Let’s join this table by the code field Whereas the order of the joined tables makes sense in
some cases, we will consider the following statement:

[Beverage] JOIN [Calorie-Free Beverage]

i e [Beverage] is from the left of the join operator, and [Calorie-Free Beverage] is from the
right

1 INNER JOIN: Result set will contain only those data where the criteria match In our ex-
ample we will get 3 records: 1 with COCACOLA and 2 with PEPSI codes

2 OUTER JOIN: OUTER JOIN will always contain the results of INNER JOIN, however it can
contain some records that have no matching record in other table OUTER JOINs are divided
to following subtypes:

Solutions to Chapter 15 | Databases

Cracking the Coding Interview | Knowledge Based2 3 3

2 1 LEFT OUTER JOIN, or simply LEFT JOIN: The result will contain all records from the left
table If no matching records were found in the right table, then its fields will contain the
NULL values In our example, we would get 4 records In addition to INNER JOIN results,
BUDWEISER will be listed, because it was in the left table

2 2 RIGHT OUTER JOIN, or simply RIGHT JOIN: This type of join is the opposite of LEFT
JOIN; it will contain all records from the right table, and missing fields from the left table will
contain NULL If we have two tables A and B, then we can say that statement A LEFT JOIN B
is equivalent to statement B RIGHT JOIN A

In our example, we will get 5 records In addition to INNER JOIN results, FRESCA and WATER
records will be listed

2 3 FULL OUTER JOIN

This type of join combines the results of LEFT and RIGHT joins All records from both tables
will be part of the result set, whether the matching record exists in the other table or not If
no matching record was found then the corresponding result fields will have a NULL value

In our example, we will get 6 records

Solutions to Chapter 15 | Databases

2 3 4CareerCup com

15 3 What is denormalization? Explain the pros and cons

 pg 80

SOLUTION

Denormalization is the process of attempting to optimize the performance of a database by
adding redundant data or by grouping data In some cases, denormalization helps cover up
the inefficiencies inherent in relational database software A relational normalized database
imposes a heavy access load over physical storage of data even if it is well tuned for high
performance

A normalized design will often store different but related pieces of information in separate
logical tables (called relations) If these relations are stored physically as separate disk files,
completing a database query that draws information from several relations (a join operation)
can be slow If many relations are joined, it may be prohibitively slow There are two strate-
gies for dealing with this The preferred method is to keep the logical design normalized, but
allow the database management system (DBMS) to store additional redundant information
on disk to optimize query response In this case, it is the DBMS software’s responsibility to
ensure that any redundant copies are kept consistent This method is often implemented
in SQL as indexed views (Microsoft SQL Server) or materialized views (Oracle) A view rep-
resents information in a format convenient for querying, and the index ensures that queries
against the view are optimized

The more usual approach is to denormalize the logical data design With care, this can
achieve a similar improvement in query response, but at a cost—it is now the database de-
signer’s responsibility to ensure that the denormalized database does not become inconsis-
tent This is done by creating rules in the database called constraints, that specify how the
redundant copies of information must be kept synchronized It is the increase in logical com-
plexity of the database design and the added complexity of the additional constraints that
make this approach hazardous Moreover, constraints introduce a trade-off, speeding up
reads (SELECT in SQL) while slowing down writes (INSERT, UPDATE, and DELETE) This means
a denormalized database under heavy write load may actually offer worse performance than
its functionally equivalent normalized counterpart

A denormalized data model is not the same as a data model that has not been normalized,
and denormalization should only take place after a satisfactory level of normalization has
taken place and that any required constraints and/or rules have been created to deal with
the inherent anomalies in the design For example, all the relations are in third normal form
and any relations with join and multivalued dependencies are handled appropriately

From http://en.wikipedia.org/wiki/Denormalization

Solutions to Chapter 15 | Databases

Cracking the Coding Interview | Knowledge Based2 3 5

15 4 Draw an entity-relationship diagram for a database with companies, people, and pro-
fessionals (people who work for companies)

 pg 80

SOLUTION

People who work for companies are Professionals So there is an ISA (is a) relationship be-
tween People and Professionals (or we could say that a Professional is derived from People)

Each Professional has additional information such as degree, work experiences, etc, in addi-
tion to the properties derived from People

A Professional works for one company at a time, but Companies can hire many Professionals,
so there is a Many to One relationship between Professionals and Companies This “Works
For” relationship can store attributes such as date of joining the company, salary, etc These
attributes are only defined when we relate a Professional with a Company

A Person can have multiple phone numbers, which is why Phone is a multi-valued attribute

Professional

People

CompaniesWorks For

Degree

Experience
Salary

Address

CName

CID

Date of
Joining

Address

Phone

ISA

N 1

DOB
SexPName

PID

Solutions to Chapter 15 | Databases

2 3 6CareerCup com

15 5 Imagine a simple database storing information for students’ grades Design what this
database might look like, and provide a SQL query to return a list of the honor roll
students (top 10%), sorted by their grade point average

 pg 80

SOLUTION

In a simplistic database, we’ll have at least these three objects: Students, Courses, and Cour-
seEnrollment Students will have at least the student name and ID, and will likely have other
personal information Courses will contain the course name and ID, and will likely contain
the course description, professor, etc CourseEnrollment will pair Students and Courses, and
will also contain a field for CourseGrade We will assume that CourseGrade is an integer

Our SQL query to get the list of honor roll students might look like this:

1 SELECT StudentName, GPA
2 FROM (
3 SELECT top 10 percent Avg(CourseEnrollment.Grade) AS GPA,
4 CourseEnrollment.StudentID
5 FROM CourseEnrollment
6 GROUP BY CourseEnrollment.StudentID
7 ORDER BY Avg(CourseEnrollment.Grade)) Honors
8 INNER JOIN Students ON Honors.StudentID = Students.StudentID

This database could get arbitrarily more complicated if we wanted to add in professor infor-
mation, billing, etc

Solutions to Chapter 16 | Low Level

Cracking the Coding Interview | Knowledge Based2 3 7

16 1 Explain the following terms: virtual memory, page fault, thrashing

 pg 82

SOLUTION

Virtual memory is a computer system technique which gives an application program the im-
pression that it has contiguous working memory (an address space), while in fact it may be
physically fragmented and may even overflow on to disk storage Systems that use this tech-
nique make programming of large applications easier and use real physical memory (e g
RAM) more efficiently than those without virtual memory

http://en.wikipedia.org/wiki/Virtual_memory

Page Fault: A page is a fixed-length block of memory that is used as a unit of transfer be-
tween physical memory and external storage like a disk, and a page fault is an interrupt (or
exception) to the software raised by the hardware, when a program accesses a page that is
mapped in address space, but not loaded in physical memory

http://en.wikipedia.org/wiki/Page_fault

Thrash is the term used to describe a degenerate situation on a computer where increas-
ing resources are used to do a decreasing amount of work In this situation the system is
said to be thrashing Usually it refers to two or more processes accessing a shared resource
repeatedly such that serious system performance degradation occurs because the system is
spending a disproportionate amount of time just accessing the shared resource Resource
access time may generally be considered as wasted, since it does not contribute to the ad-
vancement of any process In modern computers, thrashing may occur in the paging system
(if there is not ‘sufficient’ physical memory or the disk access time is overly long), or in the
communications system (especially in conflicts over internal bus access), etc

http://en.wikipedia.org/wiki/Thrash_(computer_science)

http://en.wikipedia.org/wiki/Virtual_memory
http://en.wikipedia.org/wiki/Page_fault
http://en.wikipedia.org/wiki/Thrash_(computer_science)

Solutions to Chapter 16 | Low Level

2 3 8CareerCup com

16 2 What is a Branch Target buffer? Explain how it can be used in reducing bubble cycles
in cases of branch misprediction

 pg 82

SOLUTION

Branch misprediction occurs when the CPU mispredicts the next instruction to be executed

The CPU uses pipelining which allows several instructions to be processed simultaneously
But during a conditional jump, the next instruction to be executed depends on the result of
the condition Branch Prediction tries to guess the next instruction However, if the guess is
wrong, we are penalized because the instruction which was executed must be discarded

Branch Target Buffer (BTB) reduces the penalty by predicting the path of the branch, comput-
ing the target of the branch and caching the information used by the branch There will be
no stalls if the branch entry found on BTB and the prediction is correct, otherwise the penalty
will be at least two cycles

Solutions to Chapter 16 | Low Level

Cracking the Coding Interview | Knowledge Based2 3 9

16 3 Describe direct memory access (DMA) Can a user level buffer / pointer be used by
kernel or drivers?

 pg 82

SOLUTION

Direct Memory is a feature which provides direct access (read/write) to system memory with-
out interaction from the CPU The “DMA Controller” manages this by requesting the System
bus access (DMA request) from CPU CPU completes its current task and grants access by as-
serting DMA acknowledgement signal Once it gets the access, it reads/writes the data and
returns back the system bus to the CPU by asserting the bus release signal This transfer is
faster than the usual transfer by CPU Between this time CPU is involved with processing task
which doesn’t require memory access

By using DMA, drivers can access the memory allocated to the user level buffer / pointer

Solutions to Chapter 16 | Low Level

2 4 0CareerCup com

16 4 Write a step by step execution of things that happen after a user presses a key on the
keyboard Use as much detail as possible

 pg 82

SOLUTION

1 The keyboard sends a scan code of the key to the keyboard controller (Scan code for
key pressed and key released is different)

2 The keyboard controller interprets the scan code and stores it in a buffer

3 The keyboard controller sends a hardware interrupt to the processor This is done by
putting signal on “interrupt request line”: IRQ 1

4 The interrupt controller maps IRQ 1 into INT 9

5 An interrupt is a signal which tells the processor to stop what it was doing currently
and do some special task

6 The processor invokes the “Interrupt handler” CPU fetches the address of “Interrupt
Service Routine” (ISR) from “Interrupt Vector Table” maintained by the OS (Processor
use the IRQ number for this)

7 The ISR reads the scan code from port 60h and decides whether to process it or pass
the control to program for taking action

Solutions to Chapter 16 | Low Level

Cracking the Coding Interview | Knowledge Based2 4 1

16 5 Write a program to find whether a machine is big endian or little endian

 pg 82

SOLUTION

1 #define BIG_ENDIAN 0
2 #define LITTLE_ENDIAN 1
3 int TestByteOrder() {
4 short int word = 0x0001;
5 char *byte = (char *) &word;
6 return (byte[0] ? LITTLE_ENDIAN : BIG_ENDIAN);
7 }

Solutions to Chapter 16 | Low Level

2 4 2CareerCup com

16 6 Discuss how would you make sure that a process doesn’t access an unauthorized part
of the stack

 pg 82

SOLUTION

As with any ambiguously worded interview question, it may help to probe the interviewer to
understand what specifically you’re intended to solve Are you trying to prevent code that
has overflowed a buffer from compromising the execution by overwriting stack values? Are
you trying to maintain some form of thread-specific isolation between threads? Is the code
of interest native code like C++ or running under a virtual machine like Java?

Remember that, in a multi-threaded environment, there can be multiple stacks in a process

NATIVE CODE

One threat to the stack is malicious program input, which can overflow a buffer and over-
write stack pointers, thus circumventing the intended execution of the program

If the interviewer is looking for a simple method to reduce the risk of buffer overflows in
native code, modern compilers provide this sort of stack protection through a command
line option With Microsoft’s CL, you just pass /GS to the compiler With GCC, you can use
-fstack-protector-all

For more complex schemes, you could set individual permissions on the range of memory
pages representing the stack section you care about In the Win32 API, you’d use the Virtu-
alProtect API to mark the page PAGE_READONLY or PAGE_NOACCESS This will cause the
code accessing the region to go through an exception on access to the specific section of
the stack

Alternately, you could use the HW Debug Registers (DRs) to set a read or write breakpoint
on the specific memory addresses of interest A separate process could be used to debug
the process of interest, catch the HW exception that would be generated if this section of the
stack were accessed

However, it’s very important to note that under normal circumstances, threads and processes
are not means of access control Nothing can prevent native code from writing anywhere
within the address space of its process, including to the stack Specifically, there is nothing
to prevent malicious code in the process from calling VirtualProtect and marking the stack
sections of interest PAGE_EXECUTE_READWRITE Equally so, nothing prevents code from
zeroing out the HW debug registers, eliminating your breakpoints In summary, nothing can
fully prevent native code from accessing memory addresses, including the stack, within its
own process space

MANAGED CODE

Solutions to Chapter 16 | Low Level

Cracking the Coding Interview | Knowledge Based2 4 3

A final option is to consider requiring this code that should be “sandboxed” to run in a man-
aged language like Java or C# / NET By default, the virtual machines running managed code
in these languages make it impossible to gain complete access to the stack from within the
process

One can use further security features of the runtimes to prevent the code from spawning ad-
ditional processes or running “unsafe” code to inspect the stack With NET, for example, you
can use Code Access Security (CAS) or appdomain permissions to control such execution

Solutions to Chapter 16 | Low Level

2 4 4CareerCup com

16 7 What are the best practices to prevent reverse engineering of DLLs?

 pg 82

SOLUTION

Best practices include the following:

 » Use obfuscators

 » Do not store any data (string, etc) in open form Always compress or encode it

 » Use a static link so there is no DLL to attack

 » Strip all symbols

 » Use a DEF file and an import library to have anonymous exports known only by their
export ids

 » Keep the DLL in a resource and expose it in the file system (under a suitably obscure
name, perhaps even generated at run time) only when running

 » Hide all real functions behind a factory method that exchanges a secret (better, proof of
knowledge of a secret) for a table of function pointers to the real methods

 » Use anti-debugging techniques borrowed from the malware world to prevent reverse
engineering (Note that this will likely get you false positives from AV tools)

 » Use protectors

Solutions to Chapter 16 | Low Level

Cracking the Coding Interview | Knowledge Based2 4 5

16 8 A device boots with an empty FIFO queue In the first 400 ns period after startup,
and in each subsequent 400 ns period, a maximum of 80 words will be written to the
queue Each write takes 4 ns A worker thread requires 3 ns to read a word, and 2 ns to
process it before reading the next word What is the shortest depth of the FIFO such
that no data is lost?

 pg 82

SOLUTION

While a perfectly optimal solution is complex, an interviewer is most interested in how you
approach the problem

THEORY

First, note that writes do not have to be evenly distributed within a period Thus a likely worst
case is 80 words are written at the end of the first period, followed by 80 more at the start of
the next

Note that the maximum write rate for a full period is exactly matched by a full period of pro-
cessing (400 ns / ((3 ns + 2 ns)/process) = 80 processed words/period)

As the 2nd period in our example is fully saturated, adding writes from a 3rd period would
not add additional stress, and this example is a true worst case for the conditions

A SAFE QUEUE DEPTH

For an estimate of maximum queue size, notice that these 160 writes take 640 ns (160 writes
* 4 ns / write = 640 ns), during which time only 128 words have been read (640 ns / ((3 ns + 2
ns) / word) = 128 words) However, the first read cannot start until the first write has finished,
which fills an extra slot in the queue

Also, depending on the interactions between read and write timing, a second additional slot
may be necessary to ensure a write does not trash the contents of a concurrently occurring
read Thus, a safe estimate is that the queue must be at least 34 words deep (160 - 128 + 1 +
1 = 34) to accommodate the unread words

FINDING AN OPTIMAL (MINIMAL) QUEUE DEPTH

Depending on the specifics of the problem, it’s possible that the final queue spot could be
safely removed In many cases, the time required to do an edge case analysis to determine
safety is not worth the effort However, if the interviewer is interested, the full analysis fol-
lows

We are interested in the exact queue load during the final (160th) consecutive write to the
queue We can approach this by graphing the queue load from time = 0 ns, observing the
pattern, and extending it to time = 716 ns, the time of the final consecutive write

The graph below shows that the queue load increases as each write begins, and decreases

Solutions to Chapter 16 | Low Level

2 4 6CareerCup com

3 ns after a read begins Uninteresting time segments are surrounded by [brackets] Each
character represents 1 ns

0 - 79 ns 80 - 99 ns 100 - 707 ns 708 - 723 ns
>= 724

ns

Writer AAAABBBBCCCCDDDDEEEE XXXXYYYYZZZZ____

Worker ____aaaaabbbbbcccccd opppppqqqqqrrrrr

Queue
Load

11112221222222223222 3333333343333322 *

Y = Writing word 159 @ 712 ns
Z = Writing word 160 @ 716 ns
q = Processing word 127 @ 714 ns
r = Processing word 128
* = Between 708 and 723 ns, the queue load is shown as 30 plus the
digit shown at each ns.

Note that the queue load does in fact reach a maximum of 34 at time = 716 ns

As an interesting note, if the problem had required only 2 ns of the 5 ns processing time to
complete a read, the optimal queue depth would decrease to 33

The below graphs are unnecessary, but show empirically that adding writes from the 3rd
period does not change the queue depth required

< 796 ns 797 - 807 ns 808 - 873 ns 874 - 885 ns

Writer ____AAAABBBB !!@@@@####$$

Worker ^^^&&&&&**** yyyyyzzzzzaa

Queue Load 877788778887 112111221122 *
A = Writing word 161
& = Processing word 144
= Writing word 181
z = Processing word 160 @ 779 ns
* = Between 874 and 885 ns, the queue load is shown as 20 plus the
digit shown at each ns.

< 1112 ns 1112 - 1123 ns

Writer YYYYZZZZ____

Worker ^^&&&&&%%%%%

Queue Load 333343333322 *
Z = Writing word 240 @ 1116 ns
& = Processing word 207 @ 1114 ns
* = Between 1112 and 1123 ns, the queue load is shown as 30 plus the
digit shown at each ns.

Solutions to Chapter 16 | Low Level

Cracking the Coding Interview | Knowledge Based2 4 7

16 9 Write an aligned malloc & free function that takes number of bytes and aligned byte
(which is always power of 2)

EXAMPLE

align_malloc (1000,128) will return a memory address that is a multiple of 128 and
that points to memory of size 1000 bytes

aligned_free() will free memory allocated by align_malloc

 pg 82

SOLUTION
1 We will use malloc routine provided by C to implement the functionality

Allocate memory of size (bytes required + alignment – 1 + sizeof(void*)) using malloc

alignment: malloc can give us any address and we need to find a multiple of align-
ment

(Therefore, at maximum multiple of alignment, we will be alignment-1 bytes away
from any location)

sizeof(size_t): We are returning a modified memory pointer to user, which is different
from the one that would be returned by malloc We also need to extra space to store
the address given by malloc, so that we can free memory in aligned_free by calling
free routine provided by C

2 If it returns NULL, then aligned_malloc will fail and we return NULL

3 Else, find the aligned memory address which is a multiple of alignment (call this p2)

4 Store the address returned by malloc (e g , p1 is just size_t bytes ahead of p2), which
will be required by aligned_free

5 Return p2
1 void* aligned_malloc(size_t required_bytes, size_t alignment) {
2 void* p1; // original block
3 void** p2; // aligned block
4 int offset = alignment - 1 + sizeof(void*);
5 if ((p1 = (void*)malloc(required_bytes + offset)) == NULL) {
6 return NULL;
7 }
8 p2 = (void**)(((size_t)(p1) + offset) & ~(alignment - 1));
9 p2[-1] = p1;
10 return p2;
11 }
12 void aligned_free(void *p) {
13 free(((void**)p)[-1]);
14 }

Solutions to Chapter 16 | Low Level

2 4 8CareerCup com

16 10 Write a function called my2DAlloc which allocates a two dimensional array Minimize
the number of calls to malloc and make sure that the memory is accessible by the
notation arr[i][j]

 pg 82

SOLUTION

We will use one call to malloc

Allocate one block of memory to hold the row vector and the array data The row vector will
reside in rows * sizeof(int*) bytes The integers in the array will take up another rows * cols *
sizeof(int) bytes

Constructing the array in a single malloc has the added benefit of allowing disposal of the
array with a single free call rather than using a special function to free the subsidiary data
blocks
1 #include <malloc.h>
2
3 int** My2DAlloc(int rows, int cols) {
4 int header = rows * sizeof(int*);
5 int data = rows * cols * sizeof(int);
6 int** rowptr = (int**)malloc(header + data);
7 int* buf = (int*)(rowptr + rows);
8 int k;
9 for (k = 0; k < rows; ++k) {
10 rowptr[k] = buf + k*cols;
11 }
12 return rowptr;
13 }

Solutions to Chapter 17 | Networking

Cracking the Coding Interview | Knowledge Based2 4 9

17 1 Explain what happens, step by step, after you type a URL into a browser Use as much
detail as possible

 pg 84

SOLUTION

There’s no right, or even complete, answer for this question This question allows you to go
into arbitrary amounts of detail depending on what you’re comfortable with Here’s a start
though:

1 Browser contacts the DNS server to find the IP address of URL

2 DNS returns back the IP address of the site

3 Browser opens TCP connection to the web server at port 80

4 Browser fetches the html code of the page requested

5 Browser renders the HTML in the display window

6 Browser terminates the connection when window is closed

One of the most interesting steps is Step 1 and 2 - “Domain Name Resolution ” The web ad-
dresses we type are nothing but an alias to an IP address in human readable form Mapping
of domain names and their associated Internet Protocol (IP) addresses is managed by the
Domain Name System (DNS), which is a distributed but hierarchical entity

Each domain name server is divided into zones A single server may only be responsible for
knowing the host names and IP addresses for a small subset of a zone, but DNS servers can
work together to map all domain names to their IP addresses That means if one domain
name server is unable to find the IP addresses of a requested domain then it requests the
information from other domain name servers

Solutions to Chapter 17 | Networking

2 5 0CareerCup com

17 2 Explain any common routing protocol in detail For example: BGP, OSPF, RIP

 pg 84

SOLUTION

Depending on the reader’s level of understanding, knowledge, interest or career aspirations,
he or she may wish to explore beyond what is included here Wikipedia and other websites
are great places to look for a deeper understanding We will provide only a short summary

BGP: Border Gateway Protocol

BGP is the core routing protocol of the Internet “When a BGP router first comes up on the
Internet, either for the first time or after being turned off, it establishes connections with
the other BGP routers with which it directly communicates The first thing it does is down-
load the entire routing table of each neighboring router After that it only exchanges much
shorter update messages with other routers

BGP routers send and receive update messages to indicate a change in the preferred path
to reach a computer with a given IP address If the router decides to update its own routing
tables because this new path is better, then it will subsequently propagate this information
to all of the other neighboring BGP routers to which it is connected, and they will in turn
decide whether to update their own tables and propagate the information further ”

Borrowed from http://www livinginternet com/i/iw_route_egp_bgp htm

RIP: Routing Information Protocol

“RIP provides the standard IGP protocol for local area networks, and provides great network
stability, guaranteeing that if one network connection goes down the network can quickly
adapt to send packets through another connection “

“What makes RIP work is a routing database that stores information on the fastest route
from computer to computer, an update process that enables each router to tell other rout-
ers which route is the fastest from its point of view, and an update algorithm that enables
each router to update its database with the fastest route communicated from neighboring
routers ”

Borrowing from http://www livinginternet com/i/iw_route_igp_rip htm

OSPF: Open Shortest Path First

“Open Shortest Path First (OSPF) is a particularly efficient IGP routing protocol that is faster
than RIP, but also more complex ”

The main difference between OSPF and RIP is that RIP only keeps track of the closest router
for each destination address, while OSPF keeps track of a complete topological database of
all connections in the local network The OSPF algorithm works as described below

Solutions to Chapter 17 | Networking

Cracking the Coding Interview | Knowledge Based2 5 1

 » Startup When a router is turned on it sends Hello packets to all of its neighbors, re-
ceives their Hello packets in return, and establishes routing connections by synchroniz-
ing databases with adjacent routers that agree to synchronize

 » Update At regular intervals each router sends an update message called its “link state”
describing its routing database to all the other routers, so that all routers have the same
description of the topology of the local network

 » Shortest path tree Each router then calculates a mathematical data structure called a
“shortest path tree” that describes the shortest path to each destination address and
therefore indicates the closest router to send to for each communication; in other words
-- “open shortest path first”

See http://www livinginternet com/i/iw_route_igp_ospf htm

Solutions to Chapter 17 | Networking

2 5 2CareerCup com

17 3 Compare and contrast the IPv4 and IPv6 protocols

 pg 84

SOLUTION

IPv4 and IPv6 are the internet protocols applied at the network layer IPv4 is the most widely
used protocol right now and IPv6 is the next generation protocol for internet

 » IPv4 is the fourth version of Internet protocol which uses 32 bit addressing whereas IPv6
is a next generation internet protocol which uses 128 bits addressing

 » IPv4 allows 4,294,967,296 unique addresses where as IPv6 can hold 340-undecillion (34,
000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000) unique IP addresses

 » IPv4 has different class types: A,B,C,D and E Class A, Class B, and Class C are the three
classes of addresses used on IP networks in common practice Class D addresses are
reserved for multicast Class E addresses are simply reserved, meaning they should not
be used on IP networks (used on a limited basis by some research organizations for
experimental purposes)

 » IPv6 addresses are broadly classified into three categories:

1 Unicast addresses: A Unicast address acts as an identifier for a single interface An
IPv6 packet sent to a Unicast address is delivered to the interface identified by
that address

2 Multicast addresses: A Multicast address acts as an identifier for a group / set of
interfaces that may belong to the different nodes An IPv6 packet delivered to a
multicast address is delivered to the multiple interfaces

3 Anycast addresses: Anycast addresses act as identifiers for a set of interfaces that
may belong to the different nodes An IPv6 packet destined for an Anycast ad-
dress is delivered to one of the interfaces identified by the address

 » IPv4 address notation: 239 255 255 255, 255 255 255 0

 » IPv6 addresses are denoted by eight groups of hexadecimal quartets separated by co-
lons in between them

 » An example of a valid IPv6 address: 2001:cdba:0000:0000:0000:0000:3257:9652

Because of the increase in the population, there is a need of Ipv6 protocol which can provide
solution for:

1 Increased address space

2 More efficient routing

3 Reduced management requirement

Solutions to Chapter 17 | Networking

Cracking the Coding Interview | Knowledge Based2 5 3

4 Improved methods to change ISP

5 Better mobility support

6 Multi-homing

7 Security

8 Scoped address: link-local, site-local and global-address space

Solutions to Chapter 17 | Networking

2 5 4CareerCup com

17 4 What is a network / subnet mask? Explain how host A sends a message / packet to
host B when: (a) both are on same network and (b) both are on different networks
Explain which layer makes the routing decision and how

 pg 84

SOLUTION

A mask is a bit pattern used to identify the network/subnet address The IP address consists
of two components: the network address and the host address

The IP addresses are categorized into different classes which are used to identify the network
address

Example: Consider IP address 152 210 011 002 This address belongs to Class B, so:
Network Mask: 11111111.11111111.00000000.00000000
Given Address: 10011000.11010101.00001011.00000010

By ANDing Network Mask and IP Address, we get the following network address:
10011000.11010101.00000000.00000000 (152.210.0.0)
Host address: 00001011.00000010

Similarly, a network administrator can divide any network into sub-networks by using subnet
mask To do this, we further divide the host address into two or more subnets

For example, if the above network is divided into 18 subnets (requiring a minimum of 5 bits
to represent 18 subnets), the first 5 bits will be used to identify the subnet address

Subnet Mask: 11111111 11111111 11111000 00000000 (255 255 248 0)

Given Address: 10011000 11010101 00001011 00000010

So, by ANDing the subnet mask and the given address, we get the following subnet address:
10011000 11010101 00001000 00000000 (152 210 1 0)

How Host A sends a message/packet to Host B:

When both are on same network: the host address bits are used to identify the host within
the network

Both are on different networks: the router uses the network mask to identify the network and
route the packet The host can be identified using the network host address

The network layer is responsible for making routing decisions A routing table is used to
store the path information and the cost involved with that path, while a routing algorithm
uses the routing table to decide the path on which to route the packets

Routing is broadly classified into Static and Dynamic Routing based on whether the table is
fixed or it changes based on the current network condition

Solutions to Chapter 17 | Networking

Cracking the Coding Interview | Knowledge Based2 5 5

17 5 What are the differences between TCP and UDP? Explain how TCP handles reliable
delivery (explain ACK mechanism), flow control (explain TCP sender’s / receiver’s win-
dow) and congestion control

 pg 84

SOLUTION

TCP (Transmission Control Protocol): TCP is a connection-oriented protocol A connection can
be made from client to server, and from then on any data can be sent along that connection

 » Reliable - when you send a message along a TCP socket, you know it will get there unless
the connection fails completely If it gets lost along the way, the server will re-request
the lost part This means complete integrity; data will not get corrupted

 » Ordered - if you send two messages along a connection, one after the other, you know
the first message will get there first You don’t have to worry about data arriving in the
wrong order

 » Heavyweight - when the low level parts of the TCP “stream” arrive in the wrong order, re-
send requests have to be sent All the out of sequence parts must be put back together,
which requires a bit of work

UDP(User Datagram Protocol): UDP is connectionless protocol With UDP you send messages
(packets) across the network in chunks

 » Unreliable - When you send a message, you don’t know if it’ll get there; it could get lost
on the way

 » Not ordered - If you send two messages out, you don’t know what order they’ll arrive in

 » Lightweight - No ordering of messages, no tracking connections, etc It’s just fire and
forget! This means it’s a lot quicker, and the network card / OS have to do very little work
to translate the data back from the packets

Explain how TCP handles reliable delivery (explain ACK mechanism), flow control (explain TCP
sender’s/receiver’s window).

For each TCP packet, the receiver of a packet must acknowledge that the packet is received
If there is no acknowledgement, the packet is sent again These guarantee that every single
packet is delivered ACK is a packet used in TCP to acknowledge receipt of a packet A TCP
window is the amount of outstanding (unacknowledged by the recipient) data a sender can
send on a particular connection before it gets an acknowledgment back from the receiver
that it has gotten some of it

For example, if a pair of hosts are talking over a TCP connection that has a TCP window with
a size of 64 KB, the sender can only send 64 KB of data and then it must wait for an acknowl-
edgment from the receiver that some or all of the data has been received If the receiver

Solutions to Chapter 17 | Networking

2 5 6CareerCup com

acknowledges that all the data has been received, then the sender is free to send another 64
KB If the sender gets back an acknowledgment from the receiver that it received the first
32 KB (which could happen if the second 32 KB was still in transit or it could happen if the
second 32 KB got lost), then the sender can only send another additional 32 KB since it can’t
have more than 64 KB of unacknowledged data outstanding (the second 32 KB of data plus
the third)

Congestion Control

The TCP uses a network congestion avoidance algorithm that includes various aspects of an
additive-increase-multiplicative-decrease scheme, with other schemes such as slow-start in
order to achieve congestion avoidance

There are different algorithms to solve the problem; Tahoe and Reno are the most well
known To avoid congestion collapse, TCP uses a multi-faceted congestion control strategy
For each connection, TCP maintains a congestion window, limiting the total number of unac-
knowledged packets that may be in transit end-to-end This is somewhat analogous to TCP’s
sliding window used for flow control TCP uses a mechanism called slow start to increase the
congestion window after a connection is initialized and after a timeout It starts with a win-
dow of two times the maximum segment size (MSS) Although the initial rate is low, the rate
of increase is very rapid: for every packet acknowledged, the congestion window increases
by 1 MSS so that for every round trip time (RTT), the congestion window has doubled When
the congestion window exceeds a threshold ssthresh the algorithm enters a new state, called
congestion avoidance In some implementations (i e , Linux), the initial ssthresh is large, and
so the first slow start usually ends after a loss However, ssthresh is updated at the end of
each slow start, and will often affect subsequent slow starts triggered by timeouts

Solutions to Chapter 18 | Threads and Locks

Cracking the Coding Interview | Knowledge Based2 5 7

18 1 What’s the difference between a thread and a process?

 pg 86

SOLUTION

Processes and threads are related to each other but are fundamentally different

A process can be thought of as an instance of a program in execution Each process is an in-
dependent entity to which system resources (CPU time, memory, etc) are allocated and each
process is executed in a separate address space One process cannot access the variables
and data structures of another process If you wish to access another process’ resources,
inter-process communications have to be used such as pipes, files, sockets etc

A thread uses the same stack space of a process A process can have multiple threads A key
difference between processes and threads is that multiple threads share parts of their state
Typically, one allows multiple threads to read and write the same memory (no processes can
directly access the memory of another process) However, each thread still has its own regis-
ters and its own stack, but other threads can read and write the stack memory

A thread is a particular execution path of a process; when one thread modifies a process
resource, the change is immediately visible to sibling threads

Solutions to Chapter 18 | Threads and Locks

2 5 8CareerCup com

18 2 How can you measure the time spent in a context switch?

 pg 86

SOLUTION

This is a tricky question, but let’s start with a possible solution

A context switch is the time spent switching between two processes (e g , bringing a wait-
ing process into execution and sending an executing process into waiting/terminated state)
This happens in multitasking The operating system must bring the state information of
waiting processes into memory and save the state information of the running process

In order to solve this problem, we would like to record timestamps of the last and first in-
struction of the swapping processes The context switching time would be the difference in
the timestamps between the two processes

Let’s take an easy example: Assume there are only two processes, P1 and P2

P1 is executing and P2 is waiting for execution At some point, the OS must swap P1 and
P2—let’s assume it happens at the Nth instruction of P1 So, the context switch time for this
would be Time_Stamp(P2_1) – Time_Stamp(P2_N)

Easy enough The tricky part is this: how do we know when this swapping occurs? Swap-
ping is governed by the scheduling algorithm of the OS We can not, of course, record the
timestamp of every instruction in the process

Another issue: there are many kernel level threads which are also doing context switches,
and the user does not have any control over them

Overall, we can say that this is mostly an approximate calculation which depends on the
underlying OS One approximation could be to record the end instruction timestamp of a
process and start timestamp of a process and waiting time in queue

If the total timeof execution of all the processes was T, then the context switch time = T –
(SUM for all processes (waiting time + execution time))

Solutions to Chapter 18 | Threads and Locks

Cracking the Coding Interview | Knowledge Based2 5 9

18 3 Implement a singleton design pattern as a template such that, for any given class
Foo, you can call Singleton::instance() and get a pointer to an instance of a singleton
of type Foo Assume the existence of a class Lock which has acquire() and release()
methods How could you make your implementation thread safe and exception safe?

 pg 86

SOLUTION
1 using namespace std;
2 /* Place holder for thread synchronization lock */
3 class Lock {
4 public:
5 Lock() { /* placeholder code to create the lock */ }
6 ~Lock() { /* placeholder code to deallocate the lock */ }
7 void AcquireLock() { /* placeholder to acquire the lock */ }
8 void ReleaseLock() { /* placeholder to release the lock */ }
9 };
10
11 /* Singleton class with a method that creates a new instance of the
12 * class of the type of the passed in template if it does not
13 * already exist. */
14 template <class T> class Singleton {
15 private:
16 static Lock lock;
17 static T* object;
18 protected:
19 Singleton() { };
20 public:
21 static T * instance();
22 };
23 Lock Singleton::lock;
24
25 T * Singleton::Instance() {
26 /* if object is not initialized, acquire lock */
27 if (object == 0) {
28 lock.AcquireLock();
29 /* If two threads simultaneously check and pass the first “if”
30 * condition, then only the one who acquired the lock first
31 * should create the instance */
32 if (object == 0) {
33 object = new T;
34 }
35 lock.ReleaseLock();
36 }
37 return object;
38 }

Solutions to Chapter 18 | Threads and Locks

2 6 0CareerCup com

39
40 int main() {
41 /* foo is any class defined for which we want singleton access */
42 Foo* singleton_foo = Singleton<Foo>::Instance();
43 return 0;
44 }

The general method to make a program thread safe is to lock shared resources whenever
write permission is given This way, if one thread is modifying the resource, other threads
can not modify it

Solutions to Chapter 18 | Threads and Locks

Cracking the Coding Interview | Knowledge Based2 6 1

18 4 Design a class which provides a lock only if there are no possible deadlocks

 pg 86

SOLUTION

For our solution, we implement a wait / die deadlock prevention scheme
1 class MyThread extends Thread {
2 long time;
3 ArrayList<Resource> res = new ArrayList<Resource>();
4 public ArrayList<Resource> getRes() { return res; }
5
6 public void run() {
7 /* Run infinitely */
8 time = System.currentTimeMillis();
9 int count = 0;
10 while (true) {
11 if (count < 4) {
12 if (Question.canAcquireResource(this,
13 Question.r[count])) {
14 res.add(Question.r[count]);
15 count++;
16 System.out.println(“Resource: [“ +
17 Question.r[count - 1].getId() + “] acquired by
18 thread: [“ + this.getName() + “]”);
19 try {
20 sleep(1000);
21 } catch (InterruptedException e) {
22 e.printStackTrace();
23 }
24 }
25 }
26 else {
27 this.stop();
28 }
29 }
30 }
31
32 public long getTime() { return time; }
33 public void setRes(ArrayList<Resource> res) { this.res = res; }
34 MyThread(String name) {
35 super(name);
36 }
37 }

Solutions to Chapter 18 | Threads and Locks

2 6 2CareerCup com

18 5 Suppose we have the following code:
 class Foo {
 public:
 A(.....); /* If A is called, a new thread will be created and
 * the corresponding function will be executed. */
 B(.....); /* same as above */
 C(.....); /* same as above */
 }
 Foo f;
 f.A(.....);
 f.B(.....);
 f.C(.....);

i) Can you design a mechanism to make sure that B is executed after A, and C is ex-
ecuted after B?

iii) Suppose we have the following code to use class Foo We do not know how the
threads will be scheduled in the OS

 Foo f;
 f.A(.....); f.B(.....); f.C(.....);
 f.A(.....); f.B(.....); f.C(.....);

Can you design a mechanism to make sure that all the methods will be executed in
sequence?

 pg 86

SOLUTION

i) Can you design a mechanism to make sure that B is executed after A, and C is executed after B?
1 Semaphore s_a(0);
2 Semaphore s_b(0);
3 A {
4 /***/
5 s_a.release(1);
6 }
7 B {
8 s_a.acquire(1);
9 /****/
10 s_b.release(1);
11 }
12 C {
13 s_b.acquire(1);
14 /******/
15 }

ii) Can you design a mechanism to make sure that all the methods will be executed in sequence?
1 Semaphore s_a(0);

Solutions to Chapter 18 | Threads and Locks

Cracking the Coding Interview | Knowledge Based2 6 3

2 Semaphore s_b(0);
3 Semaphore s_c(1);
4 A {
5 s_c.acquire(1);
6 /***/
7 s_a.release(1);
8 }
9 B {
10 s_a.acquire(1);
11 /****/
12 s_b.release(1);
13 }
14 C {
15 s_b.acquire(1);
16 /******/
17 s_c.release(1);
18 }

Solutions to Chapter 18 | Threads and Locks

2 6 4CareerCup com

18 6 You are given a class with synchronized method A, and a normal method C If you
have two threads in one instance of a program, can they call A at the same time? Can
they call A and C at the same time?

 pg 86

SOLUTION

Java provides two ways to achieve synchronization: synchronized method and synchronized
statement

Synchronized method: Methods of a class which need to be synchronized are declared with
“synchronized” keyword If one thread is executing a synchronized method, all other threads
which want to execute any of the synchronized methods on the same objects get blocked

Syntax: method1 and method2 need to be synchronized
1 public class SynchronizedMethod {
2 // Variables declaration
3 public synchronized returntype Method1() {
4 // Statements
5 }
6 public synchronized returntype method2() {
7 // Statements
8 }
9 // Other methods
10 }

Synchronized statement: It provides the synchronization for a group of statements rather
than a method as a whole It needs to provide the object on which these synchronized state-
ments will be applied, unlike in a synchronized method

Syntax: synchronized statements on “this” object
1 synchronized(this) {
2 /* statement 1
3 * ...
4 * statement N */
5 }

i) If you have two threads in one instance of a program, can they call A at the same time?

Not possible; read the above paragraph

ii) Can they call A and C at the same time?

Yes Only methods of the same object which are declared with the keyword synchronized
can’t be interleaved

Solutions to Chapter 19 | Moderate

Cracking the Coding Interview | Additional Review Problems2 6 5

19 1 Write a function to swap a number in place without temporary variables

 pg 89

SOLUTION

This is a classic interview problem If you haven’t heard this problem before, you can ap-
proach it by taking the difference between a and b:
1 public static void swap(int a, int b) {
2 a = b - a; // 9 - 5 = 4
3 b = b - a; // 9 - 4 = 5
4 a = a + b; // 4 + 5 = 9
5
6 System.out.println(“a: “ + a);
7 System.out.println(“b: “ + b);
8 }

You can then optimize it as follows:
1 public static void swap_opt(int a, int b) {
2 a = a^b;
3 b = a^b;
4 a = a^b;
5
6 System.out.println(“a: “ + a);
7 System.out.println(“b: “ + b);
8 }

Solutions to Chapter 19 | Moderate

2 6 6CareerCup com

19 2 Design an algorithm to figure out if someone has won in a game of tic-tac-toe

 pg 89

SOLUTION

The first thing to ask your interviewer is whether the hasWon function will be called just
once, or multiple times If it will be called multiple times, you can get a very fast algorithm
by amortizing the cost (especially if you can design your own data storage system for the
tic-tac-toe board)

Approach #1: If hasWon is called many times

There are only 3^9, or about twenty thousand tic-tac-toe boards We can thus represent our
tic-tac-toe board as an int, with each digit representing a piece (0 means Empty, 1 means
Red, 2 means Blue) We set up a hashtable or array in advance with all possible boards as
keys, and the values are 0, 1, and 2 Our function then is simply this:

int hasWon(int board) {
 return winnerHashtable[board];
}

Easy!

Approach #2: If hasWon is only called once
1 enum Piece { Empty, Red, Blue };
2 enum Check { Row, Column, Diagonal, ReverseDiagonal }
3
4 Piece getIthColor(Piece[][] board, int index, int var, Check check) {
5 if (check == Check.Row) return board[index][var];
6 else if (check == Check.Column) return board[var][index];
7 else if (check == Check.Diagonal) return board[var][var];
8 else if (check == Check.ReverseDiagonal)
9 return board[board.length - 1 - var][var];
10 return Piece.Empty;
11 }
12
13 Piece getWinner(Piece[][] board, int fixed_index, Check check) {
14 Piece color = getIthColor(board, fixed_index, 0, check);
15 if (color == Piece.Empty) return Piece.Empty;
16 for (int var = 1; var < board.length; var++) {
17 if (color != getIthColor(board, fixed_index, var, check)) {
18 return Piece.Empty;
19 }
20 }
21 return color;
22 }
23

Solutions to Chapter 19 | Moderate

Cracking the Coding Interview | Additional Review Problems2 6 7

24 Piece hasWon(Piece[][] board) {
25 int N = board.length;
26 Piece winner = Piece.Empty;
27
28 // Check rows and columns
29 for (int i = 0; i < N; i++) {
30 winner = getWinner(board, i, Check.Row);
31 if (winner != Piece.Empty) {
32 return winner;
33 }
34
35 winner = getWinner(board, i, Check.Column);
36 if (winner != Piece.Empty) {
37 return winner;
38 }
39 }
40
41 winner = getWinner(board, -1, Check.Diagonal);
42 if (winner != Piece.Empty) {
43 return winner;
44 }
45
46 // Check diagonal
47 winner = getWinner(board, -1, Check.ReverseDiagonal);
48 if (winner != Piece.Empty) {
49 return winner;
50 }
51
52 return Piece.Empty;
53 }

SUGGESTIONS AND OBSERVATIONS:

 » Note that the runtime could be reduced to O(N) with the addition of row and column
count arrays (and two sums for the diagonals)

 » A common follow up (or tweak) to this question is to write this code for an NxN board

Solutions to Chapter 19 | Moderate

2 6 8CareerCup com

19 3 Write an algorithm which computes the number of trailing zeros in n factorial

 pg 89

SOLUTION

Trailing zeros are contributed by pairs of 5 and 2, because 5*2 = 10 To count the number of
pairs, we just have to count the number of multiples of 5 Note that while 5 contributes to
one multiple of 10, 25 contributes two (because 25 = 5*5)
1 public static int numZeros(int num) {
2 int count = 0;
3 if (num < 0) {
4 System.out.println(“Factorial is not defined for < 0”);
5 return 0;
6 }
7 for (int i = 5; num / i > 0; i *= 5) {
8 count += num / i;
9 }
10 return count;
11 }

Let’s walk through an example to see how this works: Suppose num = 26 In the first loop, we
count how many multiples of five there are by doing 26 / 5 = 5 (these multiples are 5, 10, 15,
20, and 25) In the next loop, we count how many multiples of 25 there are: 26 / 25 = 1 (this
multiple is 25) Thus, we see that we get one zero from 5, 10, 15 and 20, and two zeros from
25 (note how it was counted twice in the loops) Therefore, 26! has six zeros

OBSERVATIONS AND SUGGESTIONS:

 » This is a bit of a brain teaser, but it can be approached logically (as shown above) By
thinking through what exactly will contribute a zero, and what doesn’t matter, you can
come up with a solution Again, be very clear in your rules up front so that you can
implement this correctly

Solutions to Chapter 19 | Moderate

Cracking the Coding Interview | Additional Review Problems2 6 9

19 4 Write a method which finds the maximum of two numbers You should not use if-else
or any other comparison operator

EXAMPLE

Input: 5, 10

Output: 10

 pg 89

SOLUTION

Let’s try to solve this by “re-wording” the problem We will re-word the problem until we get
something that has removed all if statements

Rewording 1: If a > b, return a; else, return b

Rewording 2: If (a - b) is negative, return b; else, return a

Rewording 3: If (a - b) is negative, let k = 1; else, let k = 0 Return a - k * (a - b)

Rewording 4: Let c = a - b Let k = the most significant bit of c Return a - k * c

We have now reworded the problem into something that fits the requirements The code
for this is below
1 int getMax(int a, int b) {
2 int c = a - b;
3 int k = (c >> 31) & 0x1;
4 int max = a - k * c;
5 return max;
6 }

Solutions to Chapter 19 | Moderate

2 7 0CareerCup com

19 5 The Game of Master Mind is played as follows:

The computer has four slots containing balls that are red (R), yellow (Y), green (G) or
blue (B) For example, the computer might have RGGB (e g , Slot #1 is red, Slots #2 and
#3 are green, Slot #4 is blue)

You, the user, are trying to guess the solution You might, for example, guess YRGB

When you guess the correct color for the correct slot, you get a “hit” If you guess
a color that exists but is in the wrong slot, you get a “pseudo-hit” For example, the
guess YRGB has 2 hits and one pseudo hit

For each guess, you are told the number of hits and pseudo-hits

Write a method that, given a guess and a solution, returns the number of hits and
pseudo hits

 pg 89

SOLUTION

This problem is straight-forward We simply check the number of hits and pseudo-hits We
will store the number of each in a class To do a quick lookup to see it an element is a pseudo-
hit, we will use a bit mask
1 public static class Result {
2 public int hits;
3 public int pseudoHits;
4 };
5
6 public static Result estimate(String guess, String solution) {
7 Result res = new Result();
8 int solution_mask = 0;
9 for (int i = 0; i < 4; ++i) {
10 solution_mask |= 1 << (1 + solution.charAt(i) - ‘A’);
11 }
12 for (int i = 0; i < 4; ++i) {
13 if (guess.charAt(i) == solution.charAt(i)) {
14 ++res.hits;
15 } else if ((solution_mask &
16 (1 << (1 + guess.charAt(i) - ‘A’))) >= 1) {
17 ++res.pseudoHits;
18 }
19 }
20 return res;
21 }

Solutions to Chapter 19 | Moderate

Cracking the Coding Interview | Additional Review Problems2 7 1

19 6 Given an integer between 0 and 999,999, print an English phrase that describes the
integer (eg, “One Thousand, Two Hundred and Thirty Four”)

 pg 89

SOLUTION

This is not an especially challenging problem, but it is a long and tedious one Your inter-
viewer is unlikely to ask to see every detail, but he / she will be interested in how you ap-
proach the problem
1 public static String numtostring(int num) {
2 StringBuilder sb = new StringBuilder();
3
4 // Count number of digits in num.
5 int len = 1;
6 while (Math.pow((double)10, (double)len) < num) {
7 len++;
8 }
9
10 String[] wordarr1 = {“”,”One ”, “Two ”, “Three ”, “Four ”,
11 “Five ”, “Six ”, “Seven ”, “Eight ”,”Nine ”};
12 String[] wordarr11 = {“”, “Eleven ”, “Twelve ”, “Thirteen ”,
13 “Fourteen ”, “Fifteen ”, “Sixteen ”,
14 “Seventeen ”, “Eighteen ”, “Nineteen ”};
15 String[] wordarr10 = {“”,”Ten ”, “Twenty ”, “Thirty ”, “Forty ”,
16 “Fifty ”, “Sixty ”, “Seventy ”, “Eighty ”,
17 “Ninety “};
18 String[] wordarr100 = {“”, “Hundred ”, “Thousand ”};
19 int tmp;
20 if (num == 0) {
21 sb.append(“Zero”);
22 } else {
23 if (len > 3 && len % 2 == 0) {
24 len++;
25 }
26 do {
27 // Number greater than 999
28 if (len > 3) {
29 tmp = (num / (int)Math.pow((double)10,(double)len-2));
30 // If tmp is 2 digit number and not a multiple of 10
31 if (tmp / 10 == 1 && tmp%10 != 0) {
32 sb.append(wordarr11[tmp % 10]) ;
33 } else {
34 sb.append(wordarr10[tmp / 10]);
35 sb.append(wordarr1[tmp % 10]);
36 }

Solutions to Chapter 19 | Moderate

2 7 2CareerCup com

37 if (tmp > 0) {
38 sb.append(wordarr100[len / 2]);
39 }
40 num = num % (int)(Math.pow((double)10,(double)len-2));
41 len = len-2;
42 } else { // Number is less than 1000
43 tmp = num / 100;
44 if (tmp != 0) {
45 sb.append(wordarr1[tmp]);
46 sb.append(wordarr100[len / 2]);
47 }
48 tmp = num % 100 ;
49 if(tmp / 10 == 1 && tmp % 10 != 0) {
50 sb.append(wordarr11[tmp % 10]) ;
51 } else {
52 sb.append(wordarr10[tmp / 10]);
53 sb.append(wordarr1[tmp % 10]);
54 }
55 len = 0;
56 }
57 } while(len > 0);
58 }
59 return sb.toString();
60 }

Solutions to Chapter 19 | Moderate

Cracking the Coding Interview | Additional Review Problems2 7 3

19 7 You are given an array of integers (both positive and negative) Find the continuous
sequence with the largest sum Return the sum

EXAMPLE

Input: {2, -8, 3, -2, 4, -10}

Output: 5 (i e , {3, -2, 4})

 pg 89

SOLUTION

A simple linear algorithm will work by keeping track of the current subsequence sum If that
sum ever drops below zero, that subsequence will not contribute to the subsequent maximal
subsequence since it would reduce it by adding the negative sum
1 public static int getMaxSum(int[] a) {
2 int maxsum = 0;
3 int sum = 0;
4 for (int i = 0; i < a.length; i++) {
5 sum += a[i];
6 if (maxsum < sum) {
7 maxsum = sum;
8 } else if (sum < 0) {
9 sum = 0;
10 }
11 }
12 return maxsum;
13 }

NOTE: If the array is all negative numbers, what is the correct behavior? Con-
sider this simple array {-3, -10, -5}. You could make a good argument that the
maximum sum is either: (A) -3 (if you assume the subsequence can’t be empty)
(B) 0 (the subsequence has length 0) or (C) MINIMUM_INT (essentially the error
case). We went with option B (max sum = 0), but there’s no “correct” answer. This
is a great thing to discuss with your interviewer to show how careful you are.

Solutions to Chapter 19 | Moderate

2 7 4CareerCup com

19 8 Design a method to find the frequency of occurrences of any given word in a book

 pg 89

SOLUTION

The first question – which you should ask your interviewer – is if you’re just asking for a
single word (“single query”) or if you might, eventually, use the same method for many dif-
ferent words (“repetitive queries”)? That is, are you simply asking for the frequency of “dog”,
or might you ask for “dog,” and then “cat,” “mouse,” etc?

Solution: Single Query

In this case, we simply go through the book, word by word, and count the number of times
that a word appears This will take O(n) time We know we can’t do better than that, as we
must look at every word in the book

Solution: Repetitive Queries

In this case, we create a hash table which maps from a word to a frequency Our code is then
like this:
1 Hashtable<String, Integer> setupDictionary(String[] book) {
2 Hashtable<String, Integer> table =
3 new Hashtable<String, Integer>();
4 for (String word : book) {
5 word = word.toLowerCase();
6 if (word.trim() != “”) {
7 if (!table.containsKey(word)) table.put(word, 0);
8 table.put(word, table.get(word) + 1);
9 }
10 }
11 return table;
12 }
13
14 int getFrequency(Hashtable<String, Integer> table, String word) {
15 if (table == null || word == null) return -1;
16 word = word.toLowerCase();
17 if (table.containsKey(word)) {
18 return table.get(word);
19 }
20 return 0;
21 }

Note: a problem like this is relatively easy. Thus, the interviewer is going to be
looking heavily at how careful you are. Did you check for error conditions?

Solutions to Chapter 19 | Moderate

Cracking the Coding Interview | Additional Review Problems2 7 5

19 9 Since XML is very verbose, you are given a way of encoding it where each tag gets
mapped to a pre-defined integer value The language/grammar is as follows:

 Element --> Element Attr* END Element END [aka, encode the element
 tag, then its attributes, then tack on an END character, then
 encode its children, then another end tag]
 Attr --> Tag Value [assume all values are strings]
 END --> 01
 Tag --> some predefined mapping to int
 Value --> string value END

Write code to print the encoded version of an xml element (passed in as string)

FOLLOW UP

Is there anything else you could do to (in many cases) compress this even further?

 pg 90

SOLUTION

Part 1: Solution

This solution tokenizes the input and then encodes the items, element by element

NOTE: See code attachment for full, executable code. We have included an ab-
breviated section here.

1 private Map<String, Byte> tagMap;
2 private static final Byte[] END = { 0, 1 };
3 private List<String> tokens;
4 private int currentTokenIndex;
5
6 byte[] encode(char[] input) throws IOException {
7 tokenize(input);
8 currentTokenIndex = 0;
9 ByteArrayOutputStream outputStream = new ByteArrayOutputStream();
10 encodeTokens(outputStream);
11 return outputStream.toByteArray();
12 }
13
14 void encodeTokens(ByteArrayOutputStream output) {
15 nextToken(“<”);
16
17 // read tag name
18 String tagName = nextToken();
19 output.write(getTagCode(tagName));
20
21 // read attributes

Solutions to Chapter 19 | Moderate

2 7 6CareerCup com

22 while (!hasNextToken(“>”) && !hasNextTokens(“/”, “>”)) {
23 // read next attribute
24 String key = nextToken();
25 nextToken(“=”);
26 String value = nextToken();
27 output.write(getTagCode(key));
28 for (char c : value.toCharArray()) {
29 output.write(c);
30 }
31 output.write(END[0]);
32 output.write(END[1]);
33 }
34 // end of attributes
35 output.write(END[0]);
36 output.write(END[1]);
37 // finish this element
38 if (hasNextTokens(“/”, “>”)) {
39 nextToken(“/”);
40 nextToken(“>”);
41 } else {
42 nextToken(“>”);
43 // while not the end tag
44 while (!hasNextTokens(“<”, “/”)) {
45 encodeTokens(output); // encode child
46 }
47 // ending tag
48 nextToken(“<”);
49 nextToken(“/”);
50 nextToken(tagName);
51 nextToken(“>”);
52 }
53 output.write(END[0]);
54 output.write(END[1]);
55 }

Part 2: Is there anything you can do to compress this further?

You can treat the file as a general stream of characters and use any number of compression
techniques: Shannon–Fano coding, Huffman coding or Arithmetic coding

Solutions to Chapter 19 | Moderate

Cracking the Coding Interview | Additional Review Problems2 7 7

19 10 Write a method to generate a random number between 1 and 7, given a method
that generates a random number between 1 and 5 (i e , implement rand7() using
rand5())

 pg 90

SOLUTION

First, observe that we cannot do this in a guaranteed finite amount of time Why? Let’s see by
a parallel example: How would you use rand2() to create rand3()?

Observe that each call of rand2() and the corresponding decision you make can be repre-
sented by a decision tree On each node, you have two branches You take the left one when
rand2() equals 0 (which happens with 1/2 probability) You take the right one when rand2()
equals 1 (which happens with 1/2 probability) You continue branching left and right as you
continue to call 1/2 When you reach a leaf, you return a result of 1, 2 or 3 (your rand3() re-
sults)

 » What’s the probability of taking each branch? 1/2

 » What’s the probability to reach a particular leaf node? 1/2^j (for some j)

 » What the probability of returning 3 (for example)? We could compute this by summing
up the probabilities of reaching each leaf node with value 3 Each of these paths has
probability 1/2^j, so we know that the total probability of returning 3 must be a series
of terms of reciprocal powers of 2 (e g , 1/2^x + 1/2^y + 1/2^z + …)

We also know, however, that the probability of returning 3 must be 1/3 (because rand3()
should be perfectly random) Can you find a series of reciprocal powers of 2 that sum to 1/3?
No, because 3 and 2 are relatively prime

We can similarly conclude that to solve this problem, we will need to accept a small (infini-
tesimally small) chance that this process will repeat forever That’s ok

So, how do we solve this?

In order to generate a random number between 1 and 7, we just need to uniformly generate
a larger range than we are looking for and then repeatedly sample until we get a number that
is good for us We will generate a base 5 number with two places with two calls to the RNG

public static int rand7() {
 while (true) {
 int num = 5 * (rand5() - 1) + (rand5() - 1);
 if (num < 21) return (num % 7 + 1);
 }
}

Solutions to Chapter 19 | Moderate

2 7 8CareerCup com

19 11 Design an algorithm to find all pairs of integers within an array which sum to a speci-
fied value

 pg 90

SOLUTION

One easy and (time) efficient solution involves a hash map from integers to integers This al-
gorithm works by iterating through the array On each element x, look up sum - x in the hash
table and, if it exists, print (x, sum - x) Add x to the hash table, and go to the next element

Alternate Solution

Definition of Complement: If we’re trying to find a pair of numbers that sums to z, the comple-
ment of x will be z - x (that is, the number that can be added to x to make z) For example,
if we’re trying to find a pair of numbers that sum to 12, the complement of –5 would be 17

The Algorithm: Imagine we have the following sorted array: {-2 -1 0 3 5 6 7 9 13 14 } Let first
point to the head of the array and last point to the end of the array To find the complement
of first, we just move last backwards until we find it If first + last < sum, then there is no com-
plement for first We can therefore move first forward We stop when first is greater than last

Why must this find all complements for first? Because the array is sorted and we’re trying
progressively smaller numbers When the sum of first and last is less than the sum, we know
that trying even smaller numbers (as last) won’t help us find a complement

Why must this find all complements for last? Because all pairs must be made up of a first and
a last We’ve found all complements for first, therefore we’ve found all complements of last

1 public static void printPairSums(int[] array, int sum) {
2 Arrays.sort(array);
3 int first = 0;
4 int last = array.length - 1;
5 while (first < last) {
6 int s = array[first] + array[last];
7 if (s == sum) {
8 System.out.println(array[first] + “ “ + array[last]);
9 ++first;
10 --last;
11 } else {
12 if (s < sum) ++first;
13 else --last;
14 }
15 }
16 }

Solutions to Chapter 20 | Hard

Cracking the Coding Interview | Additional Review Problems2 7 9

20 1 Write a function that adds two numbers You should not use + or any arithmetic op-
erators

 pg 91

SOLUTION

To investigate this problem, let’s start off by gaining a deeper understanding of how we add
numbers We’ll work in Base 10 so that it’s easier to see To add 759 + 674, I would usually add
digit[0] from each number, carry the one, add digit[1] from each number, carry the one, etc
You could take the same approach in binary: add each digit, and carry the one as necessary

Can we make this a little easier? Yes! Imagine I decided to split apart the “addition” and
“carry” steps That is, I do the following:

1 Add 759 + 674, but “forget” to carry I then get 323

2 Add 759 + 674 but only do the carrying, rather than the addition of each digit I then
get 1110

3 Add the result of the first two operations (recursively, using the same process de-
scribed in step 1 and 2): 1110 + 323 = 1433

Now, how would we do this in binary?

1 If I add two binary numbers together but forget to carry, bit[i] will be 0 if bit[i] in a and
b are both 0 or both 1 This is an XOR

2 If I add two numbers together but only carry, I will have a 1 in bit[i] if bit[i-1] in a and b
are both 1’s This is an AND, shifted

3 Now, recurse until there’s nothing to carry

1 int add_no_arithm(int a, int b) {
2 if (b == 0) return a;
3 int sum = a ^ b; // add without carrying
4 int carry = (a & b) << 1; // carry, but don’t add
5 return add_no_arithm(sum, carry); // recurse
6 }

OBSERVATIONS AND SUGGESTIONS:

The Approach: There are a couple of suggestions for figuring out this problem:

1 Our first instinct in problems like these should be that we’re going to have to work
with bits Why? Because when you take away the + sign, what other choice do we
have? Plus, that’s how computers do it

Solutions to Chapter 20 | Hard

2 8 0CareerCup com

2 Our next thought in problems like these should be to really, really understand how
you add Walk through an addition problem to see if you can understand something
new—some pattern—and then see if you can replicate that with code

Your interviewer is looking for two things in this problem:

1 Can you break down a problem and solve it?

2 Do you understand how to work with bits?

Solutions to Chapter 20 | Hard

Cracking the Coding Interview | Additional Review Problems2 8 1

20 2 Write a method to shuffle a deck of cards It must be a perfect shuffle - in other words,
each 52! permutations of the deck has to be equally likely Assume that you are given
a random number generator which is perfect

 pg 91

SOLUTION

This is a very well known interview question, and a well known algorithm If you aren’t one
of the lucky few to have already know this algorithm, read on

Let’s start with a brute force approach: we could randomly selecting items and put them into
a new array We must make sure that we don’t pick the same item twice though by somehow
marking the node as dead

Array: [1] [2] [3] [4] [5]
Randomly select 4: [4] [?] [?] [?] [?]
Mark element as dead: [1] [2] [3] [X] [5]

The tricky part is, how do we mark [4] as dead such that we prevent that element from be-
ing picked again? One way to do it is to swap the now-dead [4] with the first element in the
array:

Array: [1] [2] [3] [4] [5]
Randomly select 4: [4] [?] [?] [?] [?]
Swap dead element: [X] [2] [3] [1] [5]

Array: [X] [2] [3] [1] [5]
Randomly select 3: [4] [3] [?] [?] [?]
Swap dead element: [X] [X] [2] [1] [5]

By doing it this way, it’s much easier for the algorithm to “know” that the first k elements are
dead than that the third, fourth, nineth, etc elements are dead We can also optimize this by
merging the shuffled array and the original array

Randomly select 4: [4] [2] [3] [1] [5]
Randomly select 3: [4] [3] [2] [1] [5]

This is an easy algorithm to implement iteratively:
1 public static void shuffleArray(int[] cards) {
2 int temp, index;
3 for (int i = 0; i < cards.length; i++){
4 index = (int) (Math.random() * (cards.length - i)) + i;
5 temp = cards[i];
6 cards[i] = cards[index];
7 cards[index] = temp;
8 }
9 }

Solutions to Chapter 20 | Hard

2 8 2CareerCup com

20 3 Write a method to randomly generate a set of m integers from an array of size n Each
element must have equal probability of being chosen

 pg 91

SOLUTION

Our first instinct on this problem might be to randomly pick elements from the array and put
them into our new subset array But then, what if we pick the same element twice? Ideally,
we’d want to somehow “shrink” the array to no longer contain that element Shrinking is
expensive though because of all the shifting required

Instead of shrinking / shifting, we can swap the element with an element at the beginning
of the array and then “remember” that the array now only includes elements j and greater
That is, when we pick subset[0] to be array[k], we replace array[k] with the first element in
the array When we pick subset[1], we consider array[0] to be “dead” and we pick a random
element y between 1 and array size() We then set subset[1] equal to array[y], and set array[y]
equal to array[1] Elements 0 and 1 are now “dead ” Subset[2] is now chosen from array[2]
through array[array size()], and so on

1 /* Random number between lower and higher, inclusive */
2 public static int rand(int lower, int higher) {
3 return lower + (int)(Math.random() * (higher - lower + 1));
4 }
5
6 /* pick M elements from original array. Clone original array so that
7 * we don’t destroy the input. */
8 public static int[] pickMRandomly(int[] original, int m) {
9 int[] subset = new int[m];
10 int[] array = original.clone();
11 for (int j = 0; j < m; j++) {
12 int index = rand(j, array.length - 1);
13 subset[j] = array[index];
14 array[index] = array[j]; // array[j] is now “dead”
15 }
16 return subset;
17 }

Solutions to Chapter 20 | Hard

Cracking the Coding Interview | Additional Review Problems2 8 3

20 4 Write a method to count the number of 2s between 0 and n

 pg 91

SOLUTION

Picture a sequence of numbers:
 0 1 2 3 4 5 6 7 8 9
 10 11 12 13 14 15 16 17 18 19
 20 21 22 23 24 25 26 27 28 29
...
110 111 112 113 114 115 116 117 118 119

The last digit will be repeated every 10 numbers, the last two digits will be repeated every
10^2 numbers, the last 3 digits will be repeated every 10^3 numbers, etc

So, if there are X 2s between 0 and 99, then we know there are 2x twos between 0 and 199
Between 0 and 299, we have 3x twos from the last two digits, and another 100 2s from the
first digit

In other words, we can look at a number like this:
f(513) = 5 * f(99) + f(13) + 100

To break this down individually:

 » The sequence of the last two digits are repeated 5 times, so add 5 * f(99)

 » We need to account for the last two digits in 500 -> 513, so add f(13)

 » We need to account for the first digit being two between 200 -> 299, so add 100

Of course, if n is, say, 279, we’ll need to account for this slightly differently:
f(279) = 2 * f(99) + f(79) + 79 + 1

To break this down individually:

 » The sequence of the last two digits are repeated 2 times, so add 2 * f(99)

 » We need to account for the last two digits in 200 -> 279, so add f(79)

 » We need to account for the first digit being two between 200 -> 279, so add 79 + 1

Recu rsive Code:
1 public static int count2sR(int n) {
2 // Base case
3 if (n == 0) return 0;
4
5 // 513 into 5 * 100 + 13. [Power = 100; First = 5; Remainder = 13]
6 int power = 1;
7 while (10 * power < n) power *= 10;
8 int first = n / power;
9 int remainder = n % power;

Solutions to Chapter 20 | Hard

2 8 4CareerCup com

10
11 // Counts 2s from first digit
12 int nTwosFirst = 0;
13 if (first > 2) nTwosFirst += power;
14 else if (first == 2) nTwosFirst += remainder + 1;
15
16 // Count 2s from all other digits
17 int nTwosOther = first * count2sR(power - 1) + count2sR(remainder);
18
19 return nTwosFirst + nTwosOther;
20 }

We can also implement this algorithm iteratively:
1 public static int count2sI(int num) {
2 int countof2s = 0, digit = 0;
3 int j = num, seendigits=0, position=0, pow10_pos = 1;
4 /* maintaining this value instead of calling pow() is an 6x perf
5 * gain (48s -> 8s) pow10_posMinus1. maintaining this value
6 * instead of calling Numof2s is an 2x perf gain (8s -> 4s).
7 * overall > 10x speedup */
8 while (j > 0) {
9 digit = j % 10;
10 int pow10_posMinus1 = pow10_pos / 10;
11 countof2s += digit * position * pow10_posMinus1;
12 /* we do this if digit <, >, or = 2
13 * Digit < 2 implies there are no 2s contributed by this
14 * digit.
15 * Digit == 2 implies there are 2 * numof2s contributed by
16 * the previous position + num of 2s contributed by the
17 * presence of this 2 */
18 if (digit == 2) {
19 countof2s += seendigits + 1;
20 }
21 /* Digit > 2 implies there are digit * num of 2s by the prev.
22 * position + 10^position */
23 else if(digit > 2) {
24 countof2s += pow10_pos;
25 }
26 seendigits = seendigits + pow10_pos * digit;
27 pow10_pos *= 10;
28 position++;
29 j = j / 10;
30 }
31 return(countof2s);
32 }

Solutions to Chapter 20 | Hard

Cracking the Coding Interview | Additional Review Problems2 8 5

20 5 You have a large text file containing words Given any two words, find the shortest
distance (in terms of number of words) between them in the file Can you make the
searching operation in O(1) time? What about the space complexity for your solu-
tion?

 pg 91

SOLUTION

We will assume for this question that the word order does not matter This is a question you
should ask your interviewer If the word order does matter, we can make the small modifica-
tion shown in the code below

To solve this problem, simply traverse the file and for every occurrence of word1 and word2,
compare difference of positions and update the current minimum
1 int shortest(String[] words, String word1, String word2) {
2 int pos = 0;
3 int min = Integer.MAX_VALUE / 2;
4 int word1_pos = -min;
5 int word2_pos = -min;
6 for (int i = 0; i < words.length; i++) {
7 String current_word = words[i];
8 if (current_word.equals(word1)) {
9 word1_pos = pos;
10 // Comment following 3 lines if word order matters
11 int distance = word1_pos - word2_pos;
12 if (min > distance)
13 min = distance;
14 } else if (current_word.equals(word2)) {
15 word2_pos = pos;
16 int distance = word2_pos - word1_pos;
17 if (min > distance) min = distance;
18 }
19 ++pos;
20 }
21 return min;
22 }

To solve this problem in less time (but more space), we can create a hash table with each
word and the locations where it occurs We then just need to find the minimum (arithmetic)
difference in the locations (e g , abs(word0 loc[1] - word1 loc[5]))

To find the minimum arithmetic difference, we take each location for word1 (e g : 0, 3} and
do a modified binary search for it in word2’s location list, returning the closest number Our
search for 3, for example, in {2, 7, 9} would return 1 The minimum of all these binary searches
is the shortest distance

Solutions to Chapter 20 | Hard

2 8 6CareerCup com

20 6 Describe an algorithm to find the largest 1 million numbers in 1 billion numbers As-
sume that the computer memory can hold all one billion numbers

 pg 91

SOLUTION

Approach 1: Sorting

Sort the elements and then take the first million numbers from that Complexity is O(n log n)

Approach 2: Max Heap

1 Create a Min Heap with the first million numbers

2 For each remaining number, insert it in the Min Heap and then delete the minimum
value from the heap

3 The heap now contains the largest million numbers

4 This algorithm is O(n log m), where m is the number of values we are looking for

Approach 3: Selection Rank Algorithm (if you can modify the original array)

Selection Rank is a well known algorithm in computer science to find the ith smallest (or
largest) element in an array in expected linear time The basic algorithm for finding the ith
smallest elements goes like this:

 » Pick a random element in the array and use it as a ‘pivot’ Move all elements smaller than
that element to one side of the array, and all elements larger to the other side

 » If there are exactly i elements on the right, then you just find the smallest element on
that side

 » Otherwise, if the right side is bigger than i, repeat the algorithm on the right If the right
side is smaller than i, repeat the algorithm on the left for i – right size()

Given this algorithm, you can either:

 » Tweak it to use the existing partitions to find the largest i elements (where i = one mil-
lion)

 » Or, once you find the ith largest element, run through the array again to return all ele-
ments greater than or equal to it

This algorithm has expected O(n) time

Solutions to Chapter 20 | Hard

Cracking the Coding Interview | Additional Review Problems2 8 7

20 7 Write a program to find the longest word made of other words

 pg 91

SOLUTION

The solution below does the following:

1 Sort the array by size, putting the longest word at the front

2 For each word, split it in all possible ways That is, for “test”, split it into {“t”, “est”}, {“te”,
“st”} and {“tes”, “t”}

3 Then, for each pairing, check if the first half and the second both exist elsewhere in the
array

4 “Short circuit” by returning the first string we find that fits condition #3

What is the time complexity of this?

 » Time to sort array: O(n log n)

 » Time to check if first / second half of word exists: O(d) per word, where d is the average
length of a word

 » Total complexity: O(n log n + n * d) Note that d is fixed (probably around 5—10 charac-
ters) Thus, we can guess that for short arrays, the time is estimated by O(n * d) , which
also equals O(number of characters in the array) For longer arrays, the time will be bet-
ter estimated by O(n log n)

 » Space complexity: O(n)

Optimizations: If we didn’t want to use additional space, we could cut out the hash table This
would mean:

 » Sorting the array in alphabetical order

 » Rather than looking up the word in a hash table, we would use binary search in the array

 » We would no longer be able to short circuit

1 class LengthComparator implements Comparator<String> {
2 @Override
3 public int compare(String o1, String o2) {
4 if (o1.length() < o2.length()) return 1;
5 if (o1.length() > o2.length()) return -1;
6 return 0;
7 }
8 }

Solutions to Chapter 20 | Hard

2 8 8CareerCup com

20 8 Given a string s and an array of smaller strings T, design a method to search s for each
small string in T

 pg 91

SOLUTION

First, create a suffix tree for s For example, if your word were bibs, you would create the fol-
lowing tree:

Then, all you need to do is search for each string in T in the suffix tree Note that if “B” were a
word, you would come up with two locations
1 public class SuffixTree {
2 SuffixTreeNode root = new SuffixTreeNode();
3 public SuffixTree(String s) {
4 for (int i = 0; i < s.length(); i++) {
5 String suffix = s.substring(i);
6 root.insertString(suffix, i);
7 }
8 }
9
10 public ArrayList<Integer> getIndexes(String s) {
11 return root.getIndexes(s);
12 }
13 }
14
15 public class SuffixTreeNode {
16 HashMap<Character, SuffixTreeNode> children = new
17 HashMap<Character, SuffixTreeNode>();
18 char value;
19 ArrayList<Integer> indexes = new ArrayList<Integer>();

SB

I

B

S

S B

I

S

Solutions to Chapter 20 | Hard

Cracking the Coding Interview | Additional Review Problems2 8 9

20 public SuffixTreeNode() { }
21
22 public void insertString(String s, int index) {
23 indexes.add(index);
24 if (s != null && s.length() > 0) {
25 value = s.charAt(0);
26 SuffixTreeNode child = null;
27 if (children.containsKey(value)) {
28 child = children.get(value);
29 } else {
30 child = new SuffixTreeNode();
31 children.put(value, child);
32 }
33 String remainder = s.substring(1);
34 child.insertString(remainder, index);
35 }
36 }
37
38 public ArrayList<Integer> getIndexes(String s) {
39 if (s == null || s.length() == 0) {
40 return indexes;
41 } else {
42 char first = s.charAt(0);
43 if (children.containsKey(first)) {
44 String remainder = s.substring(1);
45 return children.get(first).getIndexes(remainder);
46 }
47 }
48 return null;
49 }
50 }
51
52 public class Question {
53 public static void main(String[] args) {
54 String testString = “mississippi”;
55 String[] stringList = {“is”, “sip”, “hi”, “sis”};
56 SuffixTree tree = new SuffixTree(testString);
57 for (String s : stringList) {
58 ArrayList<Integer> list = tree.getIndexes(s);
59 if (list != null) {
60 System.out.println(s + “: “ + list.toString());
61 }
62 }
63 }
64 }

Solutions to Chapter 20 | Hard

2 9 0CareerCup com

20 9 Numbers are randomly generated and passed to a method Write a program to find
and maintain the median value as new values are generated

 pg 91

SOLUTIONS

One solution is to use two priority heaps: a max heap for the values below the median, and
a min heap for the values above the median The median will be largest value of the max
heap When a new value arrives it is placed in the below heap if the value is less than or equal
to the median, otherwise it is placed into the above heap The heap sizes can be equal or
the below heap has one extra This constraint can easily be restored by shifting an element
from one heap to the other The median is available in constant time, so updates are O(lg n)
1 private Comparator<Integer> maxHeapComparator, minHeapComparator;
2 private PriorityQueue<Integer> maxHeap, minHeap;
3 public void addNewNumber(int randomNumber) {
4 if (maxHeap.size() == minHeap.size()) {
5 if ((minHeap.peek() != null) &&
6 randomNumber > minHeap.peek()) {
7 maxHeap.offer(minHeap.poll());
8 minHeap.offer(randomNumber);
9 } else {
10 maxHeap.offer(randomNumber);
11 }
12 }
13 else {
14 if(randomNumber < maxHeap.peek()){
15 minHeap.offer(maxHeap.poll());
16 maxHeap.offer(randomNumber);
17 }
18 else {
19 minHeap.offer(randomNumber);
20 }
21 }
22 }
23 public static double getMedian() {
24 if (maxHeap.isEmpty()) return minHeap.peek();
25 else if (minHeap.isEmpty()) return maxHeap.peek();
26 if (maxHeap.size() == minHeap.size()) {
27 return (minHeap.peek() + maxHeap.peek()) / 2;
28 } else if (maxHeap.size() > minHeap.size()) {
29 return maxHeap.peek();
30 } else {
31 return minHeap.peek();
32 }
33 }

Solutions to Chapter 20 | Hard

Cracking the Coding Interview | Additional Review Problems2 9 1

20 10 Given two words of equal length that are in a dictionary, write a method to transform
one word into another word by changing only one letter at a time The new word you
get in each step must be in the dictionary

EXAMPLE:

Input: DAMP, LIKE

Output: DAMP -> LAMP -> LIMP -> LIME -> LIKE

 pg 91

SOLUTION

Though this problem seems tough, it’s actually a straightforward modification of breadth-
first-search Each word in our “graph” branches to all words in the dictionary that are one edit
away The interesting part is how to implement this—should we build a graph as we go? We
could, but there’s an easier way We can instead use a “backtrack map ” In this backtrack map,
if B[v] = w, then you know that you edited v to get w When we reach our end word, we can
use this backtrack map repeatedly to reverse our path See the code below:
1 LinkedList<String> transform(String startWord, String stopWord,
2 Set<String> dictionary) {
3 startWord = startWord.toUpperCase();
4 stopWord = stopWord.toUpperCase();
5 Queue<String> actionQueue = new LinkedList<String>();
6 Set<String> visitedSet = new HashSet<String>();
7 Map<String, String> backtrackMap = new TreeMap<String, String>();
8
9 actionQueue.add(startWord);
10 visitedSet.add(startWord);
11
12 while (!actionQueue.isEmpty()) {
13 String w = actionQueue.poll();
14 // For each possible word v from w with one edit operation
15 for (String v : getOneEditWords(w)) {
16 if (v.equals(stopWord)) {
17 // Found our word! Now, back track.
18 LinkedList<String> list = new LinkedList<String>();
19 // Append v to list
20 list.add(v);
21 while (w != null) {
22 list.add(0, w);
23 w = backtrackMap.get(w);
24 }
25 return list;
26 }
27 // If v is a dictionary word

Solutions to Chapter 20 | Hard

2 9 2CareerCup com

28 if (dictionary.contains(v)) {
29 if (!visitedSet.contains(v)) {
30 actionQueue.add(v);
31 visitedSet.add(v); // mark visited
32 backtrackMap.put(v, w);
33 }
34 }
35 }
36 }
37 return null;
38 }
39
40 Set<String> getOneEditWords(String word) {
41 Set<String> words = new TreeSet<String>();
42 for (int i = 0; i < word.length(); i++) {
43 char[] wordArray = word.toCharArray();
44 // change that letter to something else
45 for (char c = ‘A’; c <= ‘Z’; c++) {
46 if (c != word.charAt(i)) {
47 wordArray[i] = c;
48 words.add(new String(wordArray));
49 }
50 }
51 }
52 return words;
53 }

Let n be the length of the start word and m be the number of like sized words in the diction-
ary The runtime of this algorithm is O(n*m) since the while loop will dequeue at most m
unique words The for loop is O(n) as it walks down the string applying a fixed number of
replacements for each character

Solutions to Chapter 20 | Hard

Cracking the Coding Interview | Additional Review Problems2 9 3

20 11 Imagine you have a square matrix, where each cell is filled with either black or white
Design an algorithm to find the maximum subsquare such that all four borders are
filled with black pixels

 pg 92

SOLUTION

Assumption: Square is of size NxN

This algorithm does the following:

1 Iterate through every (full) column from left to right

2 At each (full) column (call this currentColumn), look at the subcolumns (from biggest
to smallest)

3 At each subcolumn, see if you can form a square with the subcolumn as the left side If
so, update currentMaxSize and go to the next (full) column

4 If N - currentColumn <= currentMaxSize, then break completely We’ve found the
largest square possible Why? At each column, we’re trying to create a square with that
column as the left side. The largest such square we could possibly create is N - currentCol-
umn. Thus, if N-currentColumn <= currentMaxSize, then we have no need to proceed.

Time complexity: O(N^2)
1 public static Subsquare findSquare(int[][] matrix){
2 assert(matrix.length > 0);
3 for (int row = 0; row < matrix.length; row++){
4 assert(matrix[row].length == matrix.length);
5 }
6
7 int N = matrix.length;
8
9 int currentMaxSize = 0;
10 Subsquare sq = null;
11 int col = 0;
12
13 // Iterate through each column from left to right
14 while (N - col > currentMaxSize) { // See step 4 above
15 for (int row = 0; row < matrix.length; row++){
16 // starting from the biggest
17 int size = N - Math.max(row, col);
18 while (size > currentMaxSize){
19 if (isSquare(matrix, row, col, size)){
20 currentMaxSize = size;
21 sq = new Subsquare(row, col, size);
22 break; // go to next (full) column

Solutions to Chapter 20 | Hard

2 9 4CareerCup com

23 }
24 size--;
25 }
26 }
27 col++;
28 }
29 return sq;
30 }
31
32 private static boolean isSquare(int[][] matrix, int row, int col,
33 int size) {
34 // Check top and bottom border.
35 for (int j = 0; j < size; j++){
36 if (matrix[row][col+j] == 1) {
37 return false;
38 }
39 if (matrix[row+size-1][col+j] == 1){
40 return false;
41 }
42 }
43
44 // Check left and right border.
45 for (int i = 1; i < size - 1; i++){
46 if (matrix[row+i][col] == 1){
47 return false;
48 }
49 if (matrix[row+i][col+size-1] == 1){
50 return false;
51 }
52 }
53 return true;
54 }
55
56 public class Subsquare {
57 public int row, column, size;
58 public Subsquare(int r, int c, int sz) {
59 row = r;
60 column = c;
61 size = sz;
62 }
63 }

Solutions to Chapter 20 | Hard

Cracking the Coding Interview | Additional Review Problems2 9 5

20 12 Given an NxN matrix of positive and negative integers, write code to find the sub-
matrix with the largest possible sum

 pg 92

SOLUTION

Brute Force: Complexity O(N^6)

Like many “maximizing” problems, this problem has a straight forward brute force solution
The brute force solution simply iterates through all possible sub-matrixes, computes the
sum, and finds the biggest

To iterate through all possible sub-matrixes (with no duplicates), we simply need to iterate
through all order pairings of rows, and then all ordered pairings of columns

This solution is O(N^6), since we iterate through O(N^4) sub-matrixes, and it takes O(N^2)
time to compute the area of each

Optimized Solution: O(N^4)

Notice that the earlier solution is made slower by a factor of O(N^2) simply because comput-
ing the sum of a matrix is so slow Can we reduce the time to compute the area? Yes! In fact,
we can reduce the time of computeSum to O(1)

Consider the following:

If we had the sum of the smaller rectangle (the one including A, B, C, D), and we could com-
pute the sum of D as follows: area(D) = area(A through D) - area(A) - area(B) - area(C)

What if, instead, we had the following:

with the following values (notice that each Val_* starts at the origin):

x1 x2

y1

y2

A

B

C

D

A

B

C

D

Solutions to Chapter 20 | Hard

2 9 6CareerCup com

Val_D = area(point(0, 0) -> point(x2, y2))
Val_C = area(point(0, 0) -> point(x2, y1))
Val_B = area(point(0, 0) -> point(x1, y2))
Val_A = area(point(0, 0) -> point(x1, y1))

With these values, we know the following:
area(D) = Val_D - area(A union C) - area(A union B) + area(A).

Or, written another way:
area(D) = Val_D - Val_B - Val_C + Val_A

Can we efficiently compute these Val_* values for all points in the matrix? Yes, by using simi-
lar logic:

Val_(x, y) = Val(x - 1, y) + Val(y - 1, x) - Val(x - 1, y - 1)

We can precompute all such values, and then efficiently find the maximum submatrix See
the following code for this implementation
1 public static int getMaxMatrix(int[][] original) {
2 int maxArea = Integer.MIN_VALUE; // Important! Max could be < 0
3 int rowCount = original.length;
4 int columnCount = original[0].length;
5 int[][] matrix = precomputeMatrix(original);
6 for (int row1 = 0; row1 < rowCount; row1++) {
7 for (int row2 = row1; row2 < rowCount; row2++) {
8 for (int col1 = 0; col1 < columnCount; col1++) {
9 for (int col2 = col1; col2 < columnCount; col2++) {
10 maxArea = Math.max(maxArea, computeSum(matrix,
11 row1, row2, col1, col2));
12 }
13 }
14 }
15 }
16 return maxArea;
17 }
18
19 private static int[][] precomputeMatrix(int[][] matrix) {
20 int[][] sumMatrix = new int[matrix.length][matrix[0].length];
21 for (int i = 0; i < matrix.length; i++) {
22 for (int j = 0; j < matrix.length; j++) {
23 if (i == 0 && j == 0) { // first cell
24 sumMatrix[i][j] = matrix[i][j];
25 } else if (j == 0) { // cell in first column
26 sumMatrix[i][j] = sumMatrix[i - 1][j] + matrix[i][j];
27 } else if (i == 0) { // cell in first row
28 sumMatrix[i][j] = sumMatrix[i][j - 1] + matrix[i][j];
29 } else {
30 sumMatrix[i][j] = sumMatrix[i - 1][j] +
31 sumMatrix[i][j - 1] - sumMatrix[i - 1][j - 1] +

Solutions to Chapter 20 | Hard

Cracking the Coding Interview | Additional Review Problems2 9 7

32 matrix[i][j];
33 }
34 }
35 }
36 return sumMatrix;
37 }
38
39 private static int computeSum(int[][] sumMatrix, int i1, int i2,
40 int j1, int j2) {
41 if (i1 == 0 && j1 == 0) { // starts at row 0, column 0
42 return sumMatrix[i2][j2];
43 } else if (i1 == 0) { // start at row 0
44 return sumMatrix[i2][j2] - sumMatrix[i2][j1 - 1];
45 } else if (j1 == 0) { // start at column 0
46 return sumMatrix[i2][j2] - sumMatrix[i1 - 1][j2];
47 } else {
48 return sumMatrix[i2][j2] - sumMatrix[i2][j1 - 1]
49 - sumMatrix[i1 - 1][j2] + sumMatrix[i1 - 1][j1 - 1];
50 }
51 }

Solutions to Chapter 20 | Hard

2 9 8CareerCup com

20 13 Given a dictionary of millions of words, give an algorithm to find the largest possible
rectangle of letters such that every row forms a word (reading left to right) and every
column forms a word (reading top to bottom)

 pg 92

SOLUTION

Many problems involving a dictionary can be solved by doing some preprocessing Where
can we do preprocessing?

Well, if we’re going to create a rectangle of words, we know that each row must be the same
length and each column must have the same length So, let’s group the words of the dic-
tionary based on their sizes Let’s call this grouping D, where D[i] provides a list of words of
length i

Next, observe that we’re looking for the largest rectangle What is the absolute largest rect-
angle that could be formed? It’s (length of largest word) * (length of largest word)
1 int max_rectangle = longest_word * longest_word;
2 for z = max_rectangle to 1 {
3 for each pair of numbers (i, j) where i*j = z {
4 /* attempt to make rectangle. return if successful. */
5 }
6 }

By iterating in this order, we ensure that the first rectangle we find will be the largest

Now, for the hard part: make_rectangle Our approach is to rearrange words in list1 into
rows and check if the columns are valid words in list2 However, instead of creating, say,
a particular 10x20 rectangle, we check if the columns created after inserting the first two
words are even valid pre-fixes A trie becomes handy here
1 WordGroup[] groupList = WordGroup.createWordGroups(list);
2 private int maxWordLength = groupList.length;
3 private Trie trieList[] = new Trie[maxWordLength];
4
5 public Rectangle maxRectangle() {
6 int maxSize = maxWordLength * maxWordLength;
7 for (int z = maxSize; z > 0; z--) {
8 for (int i = 1; i <= maxWordLength; i ++) {
9 if (z % i == 0) {
10 int j = z / i;
11 if (j <= maxWordLength) {
12 Rectangle rectangle = makeRectangle(i,j);
13 if (rectangle != null) {
14 return rectangle;
15 }
16 }

Solutions to Chapter 20 | Hard

Cracking the Coding Interview | Additional Review Problems2 9 9

17 }
18 }
19 }
20 return null;
21 }
22
23 private Rectangle makeRectangle(int length, int height) {
24 if (groupList[length - 1] == null ||
25 groupList[height - 1] == null) {
26 return null;
27 }
28 if (trieList[height - 1] == null) {
29 LinkedList<String> words = groupList[height - 1].getWords();
30 trieList[height - 1] = new Trie(words);
31 }
32 return makePartialRectangle(length, height,
33 new Rectangle(length));
34 }
35
36 private Rectangle makePartialRectangle(int l, int h,
37 Rectangle rectangle) {
38 if (rectangle.height == h) { // Check if complete rectangle
39 if (rectangle.isComplete(l, h, groupList[h - 1])) {
40 return rectangle;
41 } else {
42 return null;
43 }
44 }
45
46 // Compare columns to trie to see if potentially valid rect */
47 if (!rectangle.isPartialOK(l, trieList[h - 1])) return null;
48
49 for (int i = 0; i < groupList[l-1].length(); i++) {
50 Rectangle org_plus =
51 rectangle.append(groupList[l-1].getWord(i));
52 Rectangle rect = makePartialRectangle(l, h, org_plus);
53 if (rect != null) {
54 return rect;
55 }
56 }
57 return null;
58 }

NOTE: See code attachment for full code.

Cracking the Coding Interview3 0 1

Index

A
arithmetic 108, 131, 143, 190, 265, 269, 271, 273, 278, 279, 283, 295

arraylists 126, 142, 152, 170, 171, 173, 185, 200, 261, 288

arrays 100, 102, 111, 179, 273, 278, 281, 282, 286

B
big-O 95, 97, 102, 113, 121, 130, 131, 141, 142, 172, 173, 181, 182, 193, 207, 216, 267, 274, 286,

287, 290, 293, 295

bit manipulation 95, 133, 134, 135, 138, 140, 141, 172, 202, 254, 265, 269, 270, 279

bit vectors 95, 142, 202, 205

breadth first search 124, 126, 199, 206, 291

C
C++ 166, 167, 215, 216, 217, 218, 219, 220, 221, 223, 224, 228, 241, 242, 247, 248, 259

combinatorics 170, 171, 266

D
databases 197, 208, 231, 232, 234

G
graphs 124, 199, 206, 291

H
hash tables 95, 98, 99, 105, 193, 200, 216, 230, 266, 270, 274, 275, 285, 287, 288, 291

heaps 286, 290

J
Java 225, 226, 227, 228, 229, 230, 264

L
lines 189, 192, 193

linked lists 105, 106, 107, 108, 109, 124, 126, 152, 196, 223, 291, 299

3 0 2CareerCup com

Index

M
matrixes 101, 102, 163, 169, 184, 293, 295

maximize and minimize 125, 148, 273, 293, 295, 298

O
object oriented design 113, 115, 118, 120, 124, 151, 152, 154, 156, 157, 159, 161, 163, 166,

167, 175, 189, 192, 199, 200, 217, 218, 221, 225, 259, 261, 266, 270, 288, 298

P
probability and randomness 187, 188, 277, 281, 282

Q
queues 113, 120, 152, 155, 195, 196, 291

R
recursion 106, 108, 113, 116, 118, 123, 125, 128, 130, 131, 141, 142, 146, 169, 170, 173, 174,

175, 176, 177, 223, 275, 279, 283, 295, 298

S
searching 148, 181, 183, 184, 285

sortings 99, 121, 159, 179, 180, 181, 182, 185, 278, 286, 287

stacks 111, 113, 115, 118, 120, 121, 124

strings 95, 96, 97, 99, 100, 103, 134, 173, 174, 180, 183, 271, 275, 287, 288

T
testing 97, 98, 209, 210, 211, 214

threading 219, 226, 242, 257, 258, 259, 262, 264

trees 123, 125, 126, 127, 128, 130, 131, 166, 208, 216, 286, 288, 290, 298

Cracking the Coding Interview3 0 3

Mock Interviews

Mock Interviews

Studying helps, but nothing can prepare you like the real thing Each CareerCup interviewer
has given over a hundred interviews at Google, Microsoft, or Amazon To nail your interview,
sit down with a trained interviewer and get their experienced feedback

See www.careercup.com/interview for more details.

One Hour Interview with Real Interviewers

Our interviewers will give you a real interview, just like you'd get at Google, Microsoft or
Amazon We'll test you on the same types of questions that they do We'll grade you the same
way they do How can we do this? We’ve done over 100 interviews each for these companies
We’ve screened resumes We’ve been part of their hiring committees We know what they
want

We'll Also Give You

 » An mp3 recording of your interview

 » Feedback on where you shined and where you struggled

 » Specific suggestions on how to improve

 » Instructions on how to approach tough problems

 » Lessons on what interviewers look for in your code

Schedule Your Interview Today!

See www careercup com/interview for pricing and details Check out our special student
rates!

3 0 4CareerCup com

About the Author

Gayle Laakmann’s interviewing
expertise comes from vast expe-
rience on both sides of the desk
She has completed Software En-
gineering interviews with - and
received offers from - Microsoft,
Google, Amazon, Apple, IBM,
Goldman Sachs, Capital IQ, and a
number of other firms

Of these top companies, she has
worked for Microsoft, Apple and
Google, where she gained deep

insight into each company’s hiring practices

Most recently, Gayle spent three years at Google as a Software Engineer
and was one of the company’s lead interviewers She interviewed over
120 candidates in the U S and abroad, and led much of the recruiting
for her alma mater, the University of Pennsylvania

Additionally, she served on Google’s Hiring Committee, where she re-
viewed each candidate’s feedback and made hire / no-hire decisions
She assessed over 700 candidates in that role, and evaluated hundreds
more resumes

In 2005, Gayle founded CareerCup com to bring her wealth of experi-
ence to candidates around the world Launched first as a free forum for
interview questions, CareerCup now offers a book, a video and mock
interviews

Gayle holds a bachelor’s and master’s degree in Computer Science from
the University of Pennsylvania

	Foreword
	Introduction
	Behind the Scenes
	The Microsoft Interview
	The Amazon Interview
	The Google Interview
	The Apple Interview
	The Yahoo Interview

	Interview War Stories
	Before the Interview
	Resume Advice
	Behavioral Preparation
	Technical Preparation

	The Interview and Beyond
	Handling Behavioral Questions
	Handling Technical Questions
	Five Algorithm Approaches
	The Offer and Beyond
	Top Ten Mistakes Candidates Make
	Frequently Asked Questions

	Interview Questions
	Data Structures
	Chapter 1 | Arrays and Strings
	Chapter 2 | Linked Lists
	Chapter 3 | Stacks and Queues
	Chapter 4 | Trees and Graphs
	Concepts and Algorithms
	Chapter 5 | Bit Manipulation
	Chapter 6 | Brain Teasers
	Chapter 7 | Object Oriented Design
	Chapter 8 | Recursion
	Chapter 9 | Sorting and Searching
	Chapter 10 | Mathematical
	Chapter 11 | Testing
	Chapter 12 | System Design and Memory Limits
	Knowledge Based
	Chapter 13 | C++
	Chapter 14 | Java
	Chapter 15 | Databases
	Chapter 16 | Low Level
	Chapter 17 | Networking
	Chapter 18 | Threads and Locks
	Additional Review Problems
	Chapter 19 | Moderate
	Chapter 20 | Hard

	Solutions
	Index
	Mock Interviews
	About the Author

